linearRegressor
Description
A linear regressor is a lagged output or input variable, such as
y(t-1) or
u(t-2). Here, the y term has a lag of
1 sample and the u term has a lag of 2 samples. A
linearRegressor
object encapsulates a set of linear regressors. Use
linearRegressor
objects when you create nonlinear ARX models using idnlarx
or nlarx
. linearRegressor
generalizes the concept of orders in ARX models, or in other words, the
[na nb nk]
matrix, to allow absolute values and noncontiguous lags. Using
linearRegressor
objects also lets you combine linear regressors with
polynomialRegressor
,
periodicRegressor
,
and customRegressor
objects in a single regressor set.
Creation
Description
specifies in lreg
= linearRegressor(Variables,Lags,useAbsolute)UseAbsolute
whether to use the absolute values of the
variables to create the regressors.
Properties
Examples
Version History
Introduced in R2021a
See Also
idnlarx
| nlarx
| getreg
| polynomialRegressor
| periodicRegressor
| customRegressor