linapp
Linear approximation of nonlinear ARX and Hammerstein-Wiener models for given input
Syntax
lm = linapp(nlmodel,u)
lm = linapp(nlmodel,umin,umax,nsample)
Description
lm = linapp(nlmodel,u)
computes a linear approximation of a
nonlinear ARX or Hammerstein-Wiener model by simulating the model output for the input
signal u
, and estimating a linear model lm
from
u
and the simulated output signal. lm
is an
idpoly
model.
lm = linapp(nlmodel,umin,umax,nsample)
computes a linear
approximation of a nonlinear ARX or Hammerstein-Wiener model by first generating the
input signal as a uniformly distributed white noise from the magnitude range
umin
and umax
and (optionally) the number of
samples.
Input Arguments
nlmodel
Name of the
idnlarx
oridnlhw
model object you want to linearize.u
Input signal as an
iddata
object or a real matrix.Dimensions of
u
must match the number of inputs innlmodel
.[umin,umax]
Minimum and maximum input values for generating white-noise input with a magnitude in this rectangular range. The sample length of this signal is
nsample
.nsample
Optional argument when you specify
[umin,umax]
. Specifies the length of the white-noise input.Default:
1024
.
Version History
Introduced in R2007a