FloatBondOption
FloatBondOption instrument object
Description
Create and price a FloatBondOption instrument object for
one or more Float Bond Option instruments using this workflow:
Use
fininstrumentto create anFloatBondOptioninstrument object for one or more Float Bond Option instruments.Use
finmodelto specify aHullWhite,BlackKarasinski,BlackDermanToy,BraceGatarekMusiela,SABRBraceGatarekMusiela,CoxIngersollRoss, orLinearGaussian2Fmodel for theFloatBondOptioninstrument object.Choose a pricing method.
When using a
HullWhite,BlackKarasinski,CoxIngersollRoss, orBlackDermanToymodel, usefinpricerto specify anIRTreepricing method for one or moreFloatBondOptioninstruments.When using a
HullWhite,BlackKarasinski,BraceGatarekMusiela,SABRBraceGatarekMusiela, orLinearGaussian2Fmodel, usefinpricerto specify anIRMonteCarlopricing method for one or moreFloatBondOptioninstruments.
For more information on this workflow, see Get Started with Workflows Using Object-Based Framework for Pricing Financial Instruments.
For more information on the available models and pricing methods
FloatBondOption instrument, see Choose Instruments, Models, and Pricers.
Creation
Syntax
Description
creates a FloatBondOptionObj = fininstrument(InstrumentType,'Strike',strike_value,'ExerciseDate',exercise_date,'Bond',bond_obj)FloatBond object for one or more Float Bond
Option instruments by specifying InstrumentType and
sets properties
using the required name-value pair arguments Strike,
ExerciseDate, and Bond.
sets optional properties
using additional name-value pair arguments in addition to the required
arguments in the previous syntax. For example, FloatBondOptionObj = fininstrument(___,Name,Value)FloatBondOptionObj =
fininstrument("FloatBondOption",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Bond',bond_obj,'OptionType','put','ExerciseStyle',"american",'Name',"float_bond_option")
creates a FloatBondOption instrument with a strike of 100
and an American exercise. You can specify multiple name-value pair
arguments.
Input Arguments
Instrument type, specified as a string with the value of
"FloatBondOption", a character vector with the
value of 'FloatBondOption', an
NINST-by-1 string array with
values of "FloatBondOption", or an
NINST-by-1 cell array of
character vectors with values of 'FloatBondOption'.
Data Types: char | cell | string
Name-Value Arguments
Specify required
and optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where
Name is the argument name and Value is
the corresponding value. Name-value arguments must appear after other arguments,
but the order of the pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: FloatBondOptionObj =
fininstrument("FloatBondOption",'Strike',100,'ExerciseDate',datetime(2019,1,30),'Bond',bond_obj,'OptionType','put','ExerciseStyle',"american",'Name',"float_bond_option")
Required FloatBondOption Name-Value Pair Arguments
Option strike value, specified as the comma-separated pair
consisting of 'Strike' and a scalar nonnegative
value or an NINST-by-1 vector
of nonnegative values.
Data Types: double
Option exercise date, specified as the comma-separated pair
consisting of 'ExerciseDate' and a scalar or an
NINST-by-1 vector using a
datetime array, string array, or date character vectors.
To support existing code, FloatBondOption also
accepts serial date numbers as inputs, but they are not recommended.
For a European option, there is only one
ExerciseDateon the option expiry date.For a Bermudan option, there is a
1-by-NSTRIKESvector of exercise dates.For an American option, the option can be exercised between
ValuationDateof the stock tree and the single listedExerciseDate.
If you use date character vectors or strings, the format must be
recognizable by datetime because
the Maturity property is stored as a
datetime.
Underlying float bond, specified as the comma-separated pair
consisting of 'Bond' and the name of a FloatBond object or an
NINST-by-1 vector of
FloatBond objects.
Data Types: object
Optional FloatBondOption Name-Value Pair Arguments
Definition of option, specified as the comma-separated pair
consisting of 'OptionType' and a scalar character
vector or a string or an
NINST-by-1 cell array of
character vectors or string array using 'call' or
'put'.
With a call option, the issuer has the right to redeem the note before its maturity date. This allows the issuer to refinance the debt at a lower rate if market conditions become favorable.
With a put option, the investor has the right to sell the note back to the issuer before its maturity date. This provides the investor with the flexibility to exit the investment if interest rates rise or market conditions change unfavorably.
Data Types: char | cell | string
Option type, specified as the comma-separated pair consisting of
'ExerciseStyle' and a scalar character vector
or string or an NINST-by-1
cell array of character vectors or string array.
Data Types: string | cell | char
User-defined name for one of more instruments, specified as the
comma-separated pair consisting of 'Name' and a
scalar string or character vector or an
NINST-by-1 cell array of
character vectors or string array.
Data Types: char | cell | string
Output Arguments
Float Bond Option instrument, returned as a
FloatBond object.
Properties
Instrument type, returned as a scalar string or an
NINST-by-1 string array.
Data Types: string
Option strike value, returned as a scalar nonnegative value or an
NINST-by-1 vector of nonnegative
values.
Data Types: double
Option exercise date, returned as a scalar datetime or an
NINST-by-1 vector of
datetimes.
Data Types: datetime
Definition of option, returned as a scalar string or an
NINST-by-1 string array.
Data Types: string
Option type, returned as a scalar string or an
NINST-by-1 string array.
Data Types: string
Underlying float bond, returned as a scalar FloatBond
object or an NINST-by-1 vector of
FloatBond objects.
Data Types: object
User-defined name for the instrument, returned as a scalar string or an
NINST-by-1 string array.
Data Types: string
Object Functions
setExercisePolicy | Set exercise policy for FixedBondOption,
FloatBondOption, or Vanilla instrument |
Examples
This example shows the workflow to price a FloatBondOption instrument when you use a HullWhite model and an IRTree pricing method.
Create FloatBond Instrument Object
Use fininstrument to create a FloatBond instrument object as the underlying bond.
BondInst = fininstrument("FloatBond",'Maturity',datetime(2030,9,15),'Spread',0.021,'Name',"bond_instrument")
BondInst =
FloatBond with properties:
Spread: 0.0210
ProjectionCurve: [0×0 ratecurve]
ResetOffset: 0
Reset: 2
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
LatestFloatingRate: NaN
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 15-Sep-2030
Name: "bond_instrument"
Create FloatBondOption Instrument Objects
Use fininstrument to create three callable FloatBondOption instrument objects with European, American, and Bermudan exercise.
FloatBOptionEuro = fininstrument("FloatBondOption",'ExerciseDate',datetime(2029,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"float_bond_option_european")
FloatBOptionEuro =
FloatBondOption with properties:
OptionType: "call"
ExerciseStyle: "european"
ExerciseDate: 15-Sep-2029
Strike: 98
Bond: [1×1 fininstrument.FloatBond]
Name: "float_bond_option_european"
FloatBOptionAmerican = fininstrument("FloatBondOption",'ExerciseDate',datetime(2029,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"american",'Name',"float_bond_option_american")
FloatBOptionAmerican =
FloatBondOption with properties:
OptionType: "call"
ExerciseStyle: "american"
ExerciseDate: 15-Sep-2029
Strike: 98
Bond: [1×1 fininstrument.FloatBond]
Name: "float_bond_option_american"
FloatBOptionBermudan = fininstrument("FloatBondOption",'ExerciseDate',[datetime(2025,9,15) , datetime(2029,09,15)],'Strike',[98,100],'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"bermudan",'Name',"float_bond_option_bermudan")
FloatBOptionBermudan =
FloatBondOption with properties:
OptionType: "call"
ExerciseStyle: "bermudan"
ExerciseDate: [15-Sep-2025 15-Sep-2029]
Strike: [98 100]
Bond: [1×1 fininstrument.FloatBond]
Name: "float_bond_option_bermudan"
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2024,9,15); Type = 'zero'; ZeroTimes = [calyears([1:10])]'; ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 0
Dates: [10×1 datetime]
Rates: [10×1 double]
Settle: 15-Sep-2024
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create a HullWhite Model Object
Use finmodel to create a HullWhite model object.
HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.05)
HullWhiteModel =
HullWhite with properties:
Alpha: 0.0100
Sigma: 0.0500
Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object and use the ratecurve object with the 'DiscountCurve' name-value pair argument.
CFdates = cfdates(Settle, BondInst.Maturity, BondInst.Reset, BondInst.Basis); HWTreePricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',CFdates')
HWTreePricer =
HWBKTree with properties:
Tree: [1×1 struct]
TreeDates: [12×1 datetime]
Model: [1×1 finmodel.HullWhite]
DiscountCurve: [1×1 ratecurve]
HWTreePricer.Tree
ans = struct with fields:
tObs: [0 0.4959 1 1.4959 2 2.4959 3 3.4986 4.0027 4.4986 5.0027 5.4986]
dObs: [15-Sep-2024 15-Mar-2025 15-Sep-2025 15-Mar-2026 15-Sep-2026 15-Mar-2027 15-Sep-2027 15-Mar-2028 15-Sep-2028 15-Mar-2029 15-Sep-2029 15-Mar-2030]
CFlowT: {[12×1 double] [11×1 double] [10×1 double] [9×1 double] [8×1 double] [7×1 double] [6×1 double] [5×1 double] [4×1 double] [3×1 double] [2×1 double] [6.0027]}
Probs: {[3×1 double] [3×3 double] [3×5 double] [3×7 double] [3×9 double] [3×11 double] [3×13 double] [3×15 double] [3×17 double] [3×19 double] [3×21 double]}
Connect: {1×11 cell}
FwdTree: {1×12 cell}
RateTree: {1×12 cell}
Price FixedBondOption Instruments
Use price to compute the price and sensitivities for the two FixedBondOption instruments.
[Price, outPR] = price(HWTreePricer,FloatBOptionEuro,["all"])Price = 3.8040
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
_____ _______ ______ ___________
3.804 -20.465 110.75 -2.6645e-11
[Price, outPR] = price(HWTreePricer,FloatBOptionAmerican,["all"])Price = 14.1700
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
_____ _______ ______ ____
14.17 -38.981 160.87 0
[Price, outPR] = price(HWTreePricer,FloatBOptionBermudan,["all"])Price = 12.0676
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ ___________
12.068 -39.402 161.55 -2.8422e-10
This example shows the workflow to price multiple FloatBondOption instruments when you use a HullWhite model and an IRTree pricing method.
Create FloatBond Instrument Object
Use fininstrument to create a FloatBond instrument object as the underlying bond.
BondInst = fininstrument("FloatBond",'Maturity',datetime(2030,9,15),'Spread',0.021,'Name',"bond_instrument")
BondInst =
FloatBond with properties:
Spread: 0.0210
ProjectionCurve: [0×0 ratecurve]
ResetOffset: 0
Reset: 2
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
LatestFloatingRate: NaN
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 15-Sep-2030
Name: "bond_instrument"
Create FloatBondOption Instrument Objects
Use fininstrument to create a FloatBondOption instrument object with European exercise for three Float Bond Option instruments.
FloatBOptionEuro = fininstrument("FloatBondOption",'ExerciseDate',datetime([2030,9,15 ; 2029,09,15 ; 2028,09,15]),'Strike',[98 ; 99 ; 100],'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"float_bond_option_european")
FloatBOptionEuro=3×1 FloatBondOption array with properties:
OptionType
ExerciseStyle
ExerciseDate
Strike
Bond
Name
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2024,9,15); Type = 'zero'; ZeroTimes = [calyears([1:10])]'; ZeroRates = [0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307 0.0310]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 0
Dates: [10×1 datetime]
Rates: [10×1 double]
Settle: 15-Sep-2024
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create a HullWhite Model Object
Use finmodel to create a HullWhite model object.
HullWhiteModel = finmodel("HullWhite",'Alpha',0.01,'Sigma',0.05)
HullWhiteModel =
HullWhite with properties:
Alpha: 0.0100
Sigma: 0.0500
Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object and use the ratecurve object with the 'DiscountCurve' name-value pair argument.
CFdates = cfdates(Settle, BondInst.Maturity, BondInst.Reset, BondInst.Basis); HWTreePricer = finpricer("IRTree",'Model',HullWhiteModel,'DiscountCurve',myRC,'TreeDates',CFdates')
HWTreePricer =
HWBKTree with properties:
Tree: [1×1 struct]
TreeDates: [12×1 datetime]
Model: [1×1 finmodel.HullWhite]
DiscountCurve: [1×1 ratecurve]
HWTreePricer.Tree
ans = struct with fields:
tObs: [0 0.4959 1 1.4959 2 2.4959 3 3.4986 4.0027 4.4986 5.0027 5.4986]
dObs: [15-Sep-2024 15-Mar-2025 15-Sep-2025 15-Mar-2026 15-Sep-2026 15-Mar-2027 15-Sep-2027 15-Mar-2028 15-Sep-2028 15-Mar-2029 15-Sep-2029 15-Mar-2030]
CFlowT: {[12×1 double] [11×1 double] [10×1 double] [9×1 double] [8×1 double] [7×1 double] [6×1 double] [5×1 double] [4×1 double] [3×1 double] [2×1 double] [6.0027]}
Probs: {[3×1 double] [3×3 double] [3×5 double] [3×7 double] [3×9 double] [3×11 double] [3×13 double] [3×15 double] [3×17 double] [3×19 double] [3×21 double]}
Connect: {1×11 cell}
FwdTree: {1×12 cell}
RateTree: {1×12 cell}
Price FixedBondOption Instruments
Use price to compute the prices and sensitivities for the FixedBondOption instruments.
[Price, outPR] = price(HWTreePricer,FloatBOptionEuro,["all"])Price = 3×1
1.8081
2.8617
3.9097
outPR=3×1 priceresult array with properties:
Results
PricerData
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ __________
1.8081 -10.854 65.153 4.4409e-12
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ ___________
2.8617 -15.751 87.167 -1.7764e-11
ans=1×4 table
Price Delta Gamma Vega
______ _______ ______ ___________
3.9097 -20.493 108.64 -7.1054e-11
This example shows the workflow to price a FloatdBondOption instrument when using a HullWhite model and an IRMonteCarlo pricing method.
Create FloatBond Instrument Object
Use fininstrument to create a FloatBond instrument object as the underlying bond.
BondInst = fininstrument("FloatBond",'Maturity',datetime(2030,9,15),'Spread',0.021,'Name',"bond_instrument")
BondInst =
FloatBond with properties:
Spread: 0.0210
ProjectionCurve: [0×0 ratecurve]
ResetOffset: 0
Reset: 2
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
LatestFloatingRate: NaN
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 15-Sep-2030
Name: "bond_instrument"
Create FloatBondOption Instrument Object
Use fininstrument to create a FloatBondOption instrument object.
FloatBOptionEuro = fininstrument("FloatBondOption",'ExerciseDate',datetime(2020,3,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"european",'Name',"float_bond_option_european")
FloatBOptionEuro =
FloatBondOption with properties:
OptionType: "call"
ExerciseStyle: "european"
ExerciseDate: 15-Mar-2020
Strike: 98
Bond: [1×1 fininstrument.FloatBond]
Name: "float_bond_option_european"
Create HullWhite Model Object
Use finmodel to create a HullWhite model object.
HullWhiteModel = finmodel("HullWhite",'Alpha',0.32,'Sigma',0.49)
HullWhiteModel =
HullWhite with properties:
Alpha: 0.3200
Sigma: 0.4900
Create ratecurve Object
Create a ratecurve object using ratecurve.
Settle = datetime(2019,1,1); Type = 'zero'; ZeroTimes = [calmonths(6) calyears([1 2 3 4 5 7 10 20 30])]'; ZeroRates = [0.0052 0.0055 0.0061 0.0073 0.0094 0.0119 0.0168 0.0222 0.0293 0.0307]'; ZeroDates = Settle + ZeroTimes; myRC = ratecurve('zero',Settle,ZeroDates,ZeroRates)
myRC =
ratecurve with properties:
Type: "zero"
Compounding: -1
Basis: 0
Dates: [10×1 datetime]
Rates: [10×1 double]
Settle: 01-Jan-2019
InterpMethod: "linear"
ShortExtrapMethod: "next"
LongExtrapMethod: "previous"
Create IRMonteCarlo Pricer Object
Use finpricer to create an IRMonteCarlo pricer object and use the ratecurve object for the 'DiscountCurve' name-value pair argument.
outPricer = finpricer("IRMonteCarlo",'Model',HullWhiteModel,'DiscountCurve',myRC,'SimulationDates',datetime(2019,3,15)+calmonths(0:6:48)')
outPricer =
HWMonteCarlo with properties:
NumTrials: 1000
RandomNumbers: []
DiscountCurve: [1×1 ratecurve]
SimulationDates: [15-Mar-2019 15-Sep-2019 15-Mar-2020 15-Sep-2020 15-Mar-2021 15-Sep-2021 15-Mar-2022 15-Sep-2022 15-Mar-2023]
Model: [1×1 finmodel.HullWhite]
Price FloatBondOption Instrument
Use price to compute the price and sensitivities for the FloatBondOption instrument.
[Price,outPR] = price(outPricer,FloatBOptionEuro,["all"])Price = 18.2369
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ _______ _____ _______
18.237 -104.22 788.7 -13.949
This example shows the workflow to price a FloatBondOption instrument when you use a CoxIngersollRoss model and an IRTree pricing method.
Create FloatBond Instrument Object
Use fininstrument to first create a FloatBond instrument object.
Maturity = datetime(2027,1,1); Spread = 0.0020; Reset = 1; FloatBond = fininstrument("FloatBond",Maturity=Maturity,Spread=Spread,Reset=Reset,Name="FloatBond_inst")
FloatBond =
FloatBond with properties:
Spread: 0.0020
ProjectionCurve: [0×0 ratecurve]
ResetOffset: 0
Reset: 1
Basis: 0
EndMonthRule: 1
Principal: 100
DaycountAdjustedCashFlow: 0
BusinessDayConvention: "actual"
LatestFloatingRate: NaN
Holidays: NaT
IssueDate: NaT
FirstCouponDate: NaT
LastCouponDate: NaT
StartDate: NaT
Maturity: 01-Jan-2027
Name: "FloatBond_inst"
Create FloatBondOption Instrument Object
Then use fininstrument to create a FloatBondOption instrument object.
Strike = 95; OptionType = 'call'; ExerciseDate = datetime(2025,1,1); FloatBOption = fininstrument("FloatBondOption",ExerciseDate=ExerciseDate,Strike=Strike,Bond=FloatBond,OptionType=OptionType,Name="FloatBondOption_inst")
FloatBOption =
FloatBondOption with properties:
OptionType: "call"
ExerciseStyle: "european"
ExerciseDate: 01-Jan-2025
Strike: 95
Bond: [1×1 fininstrument.FloatBond]
Name: "FloatBondOption_inst"
Create CoxIngersollRoss Model Object
Use finmodel to create a CoxIngersollRoss model object.
alpha = 0.03;
theta = 0.02;
sigma = 0.1;
CIRModel = finmodel("CoxIngersollRoss",Sigma=sigma,Alpha=alpha,Theta=theta)CIRModel =
CoxIngersollRoss with properties:
Sigma: 0.1000
Alpha: 0.0300
Theta: 0.0200
Create ratecurve Object
Create a ratecurve object using ratecurve.
Times= [calyears([1 2 3 4 ])]';
Settle = datetime(2023,1,1);
ZRates = [0.035; 0.042147; 0.047345; 0.052707]';
ZDates = Settle + Times;
Compounding = -1;
Basis = 1;
ZeroCurve = ratecurve("zero",Settle,ZDates,ZRates,Compounding = Compounding, Basis = Basis);Create IRTree Pricer Object
Use finpricer to create an IRTree pricer object for the CoxIngersollRoss model and use the ratecurve object for the 'DiscountCurve' name-value argument.
CIRPricer = finpricer("irtree",Model=CIRModel,DiscountCurve=ZeroCurve,Maturity=ZDates(end),NumPeriods=length(ZDates))CIRPricer =
CIRTree with properties:
Tree: [1×1 struct]
TreeDates: [4×1 datetime]
Model: [1×1 finmodel.CoxIngersollRoss]
DiscountCurve: [1×1 ratecurve]
Price FloatBonOption Instrument
Use price to compute the price for the FloatBondOption instrument.
[Price,outPR] = price(CIRPricer,FloatBOption,"all")Price = 4.9313
outPR =
priceresult with properties:
Results: [1×4 table]
PricerData: [1×1 struct]
outPR.Results
ans=1×4 table
Price Delta Gamma Vega
______ ______ ______ __________
4.9313 -10.36 22.537 1.7764e-10
More About
A floating-rate note option gives the option holder the right to sell the option back to the issuer (put) or to redeem an option (call) at a specific price and on a specific date.
Financial Instruments Toolbox™ supports three types of put and call options on bonds:
American option — An option that you exercise any time until its expiration date
European option — An option that you exercise only on its expiration date
Bermuda option — A Bermuda option resembles a hybrid of American and European options; you can only exercise it on predetermined dates, usually monthly
For more information, see Bond Options.
Tips
After creating a FloatBondOption instrument object, you can use
setExercisePolicy to
change the size of the options. For example, consider the following
instrument:
FloatBOption = fininstrument("FloatBondOption",'ExerciseDate',datetime(2029,9,15),'Strike',98,'Bond',BondInst,'OptionType',"call",'ExerciseStyle',"European")
FloatBondOption instrument object by changing
the ExerciseStyle from "European" to
"American", use setExercisePolicy:FloatBOption = setExercisePolicy(FloatBOption,[datetime(2021,1,1) datetime(2022,1,1)],100,'American')Version History
Introduced in R2020aYou can price FloatBondOption instruments using a CoxIngersollRoss model object
and an IRTree pricing
method.
Although FloatBondOption supports serial date numbers,
datetime values are recommended instead. The
datetime data type provides flexible date and time
formats, storage out to nanosecond precision, and properties to account for time
zones and daylight saving time.
To convert serial date numbers or text to datetime values, use the datetime function. For example:
t = datetime(738427.656845093,"ConvertFrom","datenum"); y = year(t)
y =
2021
There are no plans to remove support for serial date number inputs.
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)