Main Content

connectLayers

Connect layers in layer graph or network

Description

example

lgraphUpdated = connectLayers(lgraph,s,d) connects the source layer s to the destination layer d in the layer graph lgraph. The updated layer graph, lgraphUpdated, contains the same layers as lgraph and includes the new connection.

netUpdated = connectLayers(net,s,d) connects the source layer s to the destination layer d in the dlnetwork object net. The updated network, netUpdated, contains the same layers as net and includes the new connection.

Examples

collapse all

Create an addition layer with two inputs and the name 'add_1'.

add = additionLayer(2,'Name','add_1')
add = 
  AdditionLayer with properties:

          Name: 'add_1'
     NumInputs: 2
    InputNames: {'in1'  'in2'}

Create two ReLU layers and connect them to the addition layer. The addition layer sums the outputs from the ReLU layers.

relu_1 = reluLayer('Name','relu_1');
relu_2 = reluLayer('Name','relu_2');

lgraph = layerGraph;
lgraph = addLayers(lgraph,relu_1);
lgraph = addLayers(lgraph,relu_2);
lgraph = addLayers(lgraph,add);

lgraph = connectLayers(lgraph,'relu_1','add_1/in1');
lgraph = connectLayers(lgraph,'relu_2','add_1/in2');

plot(lgraph)

Figure contains an axes object. The axes object contains an object of type graphplot.

Create a simple directed acyclic graph (DAG) network for deep learning. Train the network to classify images of digits. The simple network in this example consists of:

  • A main branch with layers connected sequentially.

  • A shortcut connection containing a single 1-by-1 convolutional layer. Shortcut connections enable the parameter gradients to flow more easily from the output layer to the earlier layers of the network.

Create the main branch of the network as a layer array. The addition layer sums multiple inputs element-wise. Specify the number of inputs for the addition layer to sum. To easily add connections later, specify names for the first ReLU layer and the addition layer.

layers = [
    imageInputLayer([28 28 1])
    
    convolution2dLayer(5,16,'Padding','same')
    batchNormalizationLayer
    reluLayer('Name','relu_1')
    
    convolution2dLayer(3,32,'Padding','same','Stride',2)
    batchNormalizationLayer
    reluLayer
    convolution2dLayer(3,32,'Padding','same')
    batchNormalizationLayer
    reluLayer
    
    additionLayer(2,'Name','add')
    
    averagePooling2dLayer(2,'Stride',2)
    fullyConnectedLayer(10)
    softmaxLayer
    classificationLayer];

Create a layer graph from the layer array. layerGraph connects all the layers in layers sequentially. Plot the layer graph.

lgraph = layerGraph(layers);
figure
plot(lgraph)

Figure contains an axes object. The axes object contains an object of type graphplot.

Create the 1-by-1 convolutional layer and add it to the layer graph. Specify the number of convolutional filters and the stride so that the activation size matches the activation size of the third ReLU layer. This arrangement enables the addition layer to add the outputs of the third ReLU layer and the 1-by-1 convolutional layer. To check that the layer is in the graph, plot the layer graph.

skipConv = convolution2dLayer(1,32,'Stride',2,'Name','skipConv');
lgraph = addLayers(lgraph,skipConv);
figure
plot(lgraph)

Figure contains an axes object. The axes object contains an object of type graphplot.

Create the shortcut connection from the 'relu_1' layer to the 'add' layer. Because you specified two as the number of inputs to the addition layer when you created it, the layer has two inputs named 'in1' and 'in2'. The third ReLU layer is already connected to the 'in1' input. Connect the 'relu_1' layer to the 'skipConv' layer and the 'skipConv' layer to the 'in2' input of the 'add' layer. The addition layer now sums the outputs of the third ReLU layer and the 'skipConv' layer. To check that the layers are connected correctly, plot the layer graph.

lgraph = connectLayers(lgraph,'relu_1','skipConv');
lgraph = connectLayers(lgraph,'skipConv','add/in2');
figure
plot(lgraph);

Figure contains an axes object. The axes object contains an object of type graphplot.

Load the training and validation data, which consists of 28-by-28 grayscale images of digits.

[XTrain,YTrain] = digitTrain4DArrayData;
[XValidation,YValidation] = digitTest4DArrayData;

Specify training options and train the network. trainNetwork validates the network using the validation data every ValidationFrequency iterations.

options = trainingOptions('sgdm', ...
    'MaxEpochs',8, ...
    'Shuffle','every-epoch', ...
    'ValidationData',{XValidation,YValidation}, ...
    'ValidationFrequency',30, ...
    'Verbose',false, ...
    'Plots','training-progress');
net = trainNetwork(XTrain,YTrain,lgraph,options);

Figure Training Progress (03-Mar-2023 09:03:27) contains 2 axes objects and another object of type uigridlayout. Axes object 1 with xlabel Iteration, ylabel Loss contains 15 objects of type patch, text, line. Axes object 2 with xlabel Iteration, ylabel Accuracy (%) contains 15 objects of type patch, text, line.

Display the properties of the trained network. The network is a DAGNetwork object.

net
net = 
  DAGNetwork with properties:

         Layers: [16x1 nnet.cnn.layer.Layer]
    Connections: [16x2 table]
     InputNames: {'imageinput'}
    OutputNames: {'classoutput'}

Classify the validation images and calculate the accuracy. The network is very accurate.

YPredicted = classify(net,XValidation);
accuracy = mean(YPredicted == YValidation)
accuracy = 0.9934

Input Arguments

collapse all

Layer graph, specified as a LayerGraph object. To create a layer graph, use layerGraph.

Neural network, specified as a dlnetwork object.

Connection source, specified as a character vector or a string scalar.

  • If the source layer has a single output, then s is the name of the layer.

  • If the source layer has multiple outputs, then s is the layer name followed by the character / and the name of the layer output: 'layerName/outputName'.

Example: 'conv1'

Example: 'mpool/indices'

Connection destination, specified as a character vector or a string scalar.

  • If the destination layer has a single input, then d is the name of the layer.

  • If the destination layer has multiple inputs, then d is the layer name followed by the character / and the name of the layer input: 'layerName/inputName'.

Example: 'fc'

Example: 'addlayer1/in2'

Output Arguments

collapse all

Updated layer graph, returned as a LayerGraph object.

Updated network, returned as an uninitialized dlnetwork object.

To initialize the learnable parameters of a dlnetwork object, use the initialize function.

The connectLayers function does not preserve quantization information. If the input network is a quantized network, then the output network does not contain quantization information.

Version History

Introduced in R2017b