rsgenpoly

Generator polynomial of Reed-Solomon code

Description

example

genpoly = rsgenpoly(N,K) returns the narrow-sense generator polynomial of an [N,K] Reed-Solomon code. The output genpoly is a Galois field array that represents the coefficients of the generator polynomial in order of descending powers. A narrow-sense BCH code is a BCH code with B = 1. Here, the narrow-sense generator polynomial is (X – α1)(X – α2)...(X – αNK), where α is a root of the default primitive polynomial for the field GF(N+1). For additional information, see Narrow-Sense BCH Codes and Reed-Solomon Codes.

example

genpoly = rsgenpoly(N,K,prim_poly) also specifies the primitive polynomial, prim_poly, for GF(N+1) that has α as a root.

example

genpoly = rsgenpoly(N,K,prim_poly,B) returns the generator polynomial, (X – αB)(X – αB+1)...(X – αB+NK – 1), where B is an integer.

example

genpoly = rsgenpoly(N,K,prim_poly,B,outputFormat) specifies the output format of genpoly as a Galois field array or double-precision array.

example

[genpoly,T] = rsgenpoly(___) also returns the error-correction capability of the [N,K] Reed-Solomon code, T, using any of the preceding input argument syntaxes.

Examples

collapse all

Specify the codeword length, n, and message length, k.

n = 7;
k = 3;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code. genpoly is a Galois field array, by default, that represents the coefficients of this generator polynomial in order of descending powers.

genpoly = rsgenpoly(n,k)

genpoly = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

1   3   1   2   3

Create the narrow-sense generator polynomial of a Reed-Solomon code with respect to the primitive polynomial ${\mathit{D}}^{3}+{\mathit{D}}^{2}+1$.

Specify the codeword length, n, message length, k, and primitive polynomial ${\mathit{D}}^{3}+{\mathit{D}}^{2}+1$ represented in decimal form.

n = 7;
k = 3;
prim_poly = 13;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code with respect to primitive polynomial ${\mathit{D}}^{3}+{\mathit{D}}^{2}+1$ for GF(8). genpoly is a Galois field array, by default, that represent the coefficients of this generator polynomial in order of descending powers.

genpoly = rsgenpoly(n,k,prim_poly)

genpoly = GF(2^3) array. Primitive polynomial = D^3+D^2+1 (13 decimal)

Array elements =

1   4   5   1   5

Create the generator polynomial of a Reed-Solomon code with respect to the default primitive polynomial.

Specify the codeword length, n, message length, k, and exponent of $\alpha$, b.

n = 7;
k = 3;
b = 4;

Create the generator polynomial $\left(\mathit{X}-{\alpha }^{4}\right)\left(\mathit{X}-{\alpha }^{5}\right)\left(\mathit{X}-{\alpha }^{6}\right)\left(\mathit{X}-{\alpha }^{7}\right)$, with respect to the default primitive polynomial. genpoly is a Galois field array that represents the coefficients of this generator polynomial in order of descending powers. Display the error-correcting capability of the code.

[genpoly,t] = rsgenpoly(n,k,[],b)

genpoly = GF(2^3) array. Primitive polynomial = D^3+D+1 (11 decimal)

Array elements =

1   5   5   3   2
t = 2

Create the generator polynomial of a Reed-Solomon code with respect to the primitive polynomial ${\mathit{D}}^{8}+{\mathit{D}}^{4}+{\mathit{D}}^{3}+{\mathit{D}}^{2}+1$.

Specify the codeword length, n, message length, k, the primitive polynomial represented in decimal form, and the exponent of $\alpha$, b.

n = 255;
k = 239;
prim_poly = 285;
b = 0;

Create the generator polynomial for the [n,k] Reed-Solomon code. genpoly is a Galois field array that represents a generator polynomial and is compliant with DVB-S and WiMAX.

genpoly = rsgenpoly(n,k,prim_poly,b)

genpoly = GF(2^8) array. Primitive polynomial = D^8+D^4+D^3+D^2+1 (285 decimal)

Array elements =

Columns 1 through 13

1    59    13   104   189    68   209    30     8   163    65    41   229

Columns 14 through 17

98    50    36    59

Create the narrow-sense generator polynomial of a Reed-Solomon code. Specify the output data type as a double-precision array.

Specify the codeword length, n, and message length, k.

n = 7;
k = 3;

Create the narrow-sense generator polynomial for the [n,k] Reed-Solomon code. genpoly is a double-precision array, that represents the coefficients of this generator polynomial in order of descending powers. Specify defaults values for the primitive polynomial and exponent of $\alpha$ inputs by assigning [ ] for them.

genpoly = rsgenpoly(n,k,[],[],'double')
genpoly = 1×5

1     3     1     2     3

Input Arguments

collapse all

Codeword length, specified as an integer of the form N = 2M – 1, where M is in the range [3,16]. For more information, see Limitations.

Example: Set N to 15 for M=4.

Message length, specified as a positive integer. For more information, see Limitations.

Primitive polynomial, specified as a positive integer. prim_poly is an integer whose binary representation indicates the coefficients of the primitive polynomial. To use the default primitive polynomial GF(N+1), set prim_poly to []. For more information, see Default Primitive Polynomials.

Example: 19 specifies the primitive polynomial D4+D+1 because its binary representation is 10011.

Exponent of α, specified as a positive integer. α is a root of prim_poly.

Output format of genpoly, specified as:

• 'gf' — to output a Galois field array.

• 'double' — to output a double-precision array of the Galois field values.

Output Arguments

collapse all

Generator polynomial coefficients in descending order, returned as a Galois field array or double-precision array. genpoly is a row vector that represents the coefficients of the narrow-sense generator polynomial of an [N,K] Reed-Solomon code in order of descending powers.

Error-correction capability of the code, returned as a positive integer equal to ⌊(NK)/2⌋.

Limitations

• Valid values for N = 2M – 1, where M is an integer in the range [3,16]. The maximum allowable value of N = 216 – 1 = 65,535.

• Valid values for K = [1,N – 1].

collapse all

Default Primitive Polynomials

This table lists the default primitive polynomial used for each Galois field array GF(2m). To use a different primitive polynomial, specify prim_poly as an input argument. prim_poly must be in the range [(2m + 1), (2m+1 – 1)] and must indicate an irreducible polynomial. For more information, see Primitive Polynomials and Element Representations.

Value of mDefault Primitive PolynomialInteger Representation
1D + 13
2D2 + D + 17
3D3 + D + 111
4D4 + D + 119
5D5 + D2 + 137
6D6 + D + 167
7D7 + D3 + 1137
8D8 + D4 + D3 + D2 + 1285
9D9 + D4 + 1529
10D10 + D3 + 11033
11D11 + D2 + 12053
12D12 + D6 + D4 + D + 14179
13D13 + D4 + D3 + D + 18219
14D14 + D10 + D6 + D + 117475
15D15 + D + 132771
16D16 + D12 + D3 + D + 169643