Skip to content
MathWorks - Mobile View
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
MathWorks
  • Products
  • Solutions
  • Academia
  • Support
  • Community
  • Events
  • Get MATLAB
  • Sign In to Your MathWorks AccountSign In to Your MathWorks Account
  • Access your MathWorks Account
    • My Account
    • My Community Profile
    • Link License
    • Sign Out

Videos and Webinars

  • MathWorks
  • Videos
  • Videos Home
  • Search
  • Videos Home
  • Search
  • Contact sales
  • Trial software
23:59 Video length is 23:59.
  • Description
  • Related Resources

Physics-Informed Machine Learning: Using the Laws of Nature to Improve Generalized Deep Learning Models

Dr. Samuel Raymond, Stanford University

Physics-informed machine learning covers several different approaches to infusing the existing knowledge of the world around us with the powerful techniques in machine learning. One area of intense research attention is using deep learning to augment large-scale simulations of complex systems such as the climate. Here, data from satellites is used with simulation data to predict the evolution of these complex systems. While there is a wealth of data and the computational models have achieved remarkable maturity, the tools used in machine learning are often less constrained than the laws that govern physical processes. Non-physical results can be produced by deep learning predictions unless proper constraints are implemented.

Using Deep Learning Toolbox™ in MATLAB® R2020b, new loss functions can be easily implemented and tested on the fly. To demonstrate, in this talk a simple case of pendulum dynamics will be discussed and the prediction of motion is shown by using two neural networks, one trained with traditional loss function, and one with a physics-based loss function. The results show that the extra constraints allow the network to predict the motion of the system far more accurately than the conventional approach. While this represents a simple proof-of-concept, this model features many common aspects of more complex physical systems and allows for a fast and informative testing platform.

Learn More

View slides
See all proceedings from MATLAB EXPO 2021

Bridging Wireless Communications Design and Testing with MATLAB

Read white paper

Feedback

Up Next:

30:30
Teaching Physics with MATLAB Through Project-Based Learning

Related Videos:

39:11
Predictive Modeling Using Machine Learning - A Mining Case...
43:19
Using Machine Learning to Model Complex Systems
3:02
Machine Learning with MATLAB Overview
42:45
Signal Processing and Machine Learning Techniques for...
MathWorks - Domain Selector

Select a Web Site

Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

  • Switzerland (English)
  • Switzerland (Deutsch)
  • Switzerland (Français)
  • 中国 (简体中文)
  • 中国 (English)

You can also select a web site from the following list:

How to Get Best Site Performance

Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.

Americas

  • América Latina (Español)
  • Canada (English)
  • United States (English)

Europe

  • Belgium (English)
  • Denmark (English)
  • Deutschland (Deutsch)
  • España (Español)
  • Finland (English)
  • France (Français)
  • Ireland (English)
  • Italia (Italiano)
  • Luxembourg (English)
  • Netherlands (English)
  • Norway (English)
  • Österreich (Deutsch)
  • Portugal (English)
  • Sweden (English)
  • Switzerland
    • Deutsch
    • English
    • Français
  • United Kingdom (English)

Asia Pacific

  • Australia (English)
  • India (English)
  • New Zealand (English)
  • 中国
    • 简体中文Chinese
    • English
  • 日本Japanese (日本語)
  • 한국Korean (한국어)

Contact your local office

  • Contact sales
  • Trial software

MathWorks

Accelerating the pace of engineering and science

MathWorks is the leading developer of mathematical computing software for engineers and scientists.

Discover…

Explore Products

  • MATLAB
  • Simulink
  • Student Software
  • Hardware Support
  • File Exchange

Try or Buy

  • Downloads
  • Trial Software
  • Contact Sales
  • Pricing and Licensing
  • How to Buy

Learn to Use

  • Documentation
  • Tutorials
  • Examples
  • Videos and Webinars
  • Training

Get Support

  • Installation Help
  • MATLAB Answers
  • Consulting
  • License Center
  • Contact Support

About MathWorks

  • Careers
  • Newsroom
  • Social Mission
  • Customer Stories
  • About MathWorks
  • Select a Web Site United States
  • Trust Center
  • Trademarks
  • Privacy Policy
  • Preventing Piracy
  • Application Status

© 1994-2022 The MathWorks, Inc.

  • Facebook
  • Twitter
  • Instagram
  • YouTube
  • LinkedIn
  • RSS

Join the conversation