Reinforcement Learning for Financial Trading
Reinforcement Learning For Financial Trading ?
How to use Reinforcement learning for financial trading using Simulated Stock Data using MATLAB.
Setup
To run:
Open RL_trading_demo.prj
Open workflow.mlx
Run workflow.mlx
Environment and Reward can be found in: myStepFunction.m
Overview:
The goal of the Reinforcement Learning agent is simple. Learn how to trade the financial markets without ever losing money.
Note, this is different from learn how to trade the market and make the most money possible.
The aim of this example was to show:
1. What reinforcement learning is
2. How it can be applied to trading the financial markets
3. Leave a starting point for financial professionals to use and enhance using their own domain expertise.
The example use an environment consisting of 3 stocks, $20000 cash & 15 years of historical data.
Stocks are:
Simulated via Geometric Brownian Motion or
Historical Market data (source: AlphaVantage: www.alphavantage.co)
Copyright 2020 The MathWorks, Inc.
Cite As
David Willingham (2024). Reinforcement Learning for Financial Trading (https://github.com/matlab-deep-learning/reinforcement_learning_financial_trading), GitHub. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
MultiAgentLearning
data
docs
MultiAgentLearning
Versions that use the GitHub default branch cannot be downloaded
Version | Published | Release Notes | |
---|---|---|---|
1.0.2 | Updated Description |
|
|
1.0.1 | Added MATLAB Live script version |
|
|
1.0.0 |
|