Deep Learning: Image anomaly detection for production line ~
When we apply deeplearning to anomaly detection for image on production line, there are few abnomal units to train your classifier.
Through this demo, you can learn how to try anomaly detection without training data of abnomal unit and labeling.
-kernel methods with 1class SVM and pre-trained AlexNet
-focus on production line and manufacturing.
-unsupervised classification (without labeling)
-feature visualization with t-SNE
This demo include hundreds training and test images. So you can try this now.
You can download the AlexNet support package here:
https://www.mathworks.com/matlabcentral/fileexchange/59133-neural-network-toolbox-tm--model-for-alexnet-network
Cite As
Takuji Fukumoto (2024). Deep Learning: Image anomaly detection for production line ~ (https://github.com/mathworks/Deep-Learning-Image-anomaly-detection-for-production-line/releases/tag/1.0.1), GitHub. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.1 | See release notes for this release on GitHub: https://github.com/mathworks/Deep-Learning-Image-anomaly-detection-for-production-line/releases/tag/1.0.1 |
||
1.0.0.0 |