File Exchange

image thumbnail

AdaBoost

version 1.0.0.0 (227 KB) by Bhartendu
AdaBoost, Weak classifiers: GDA, Knn, Naive Bayes, Linear, SVM

21 Downloads

Updated 28 May 2017

View License

AdaBoost Demo, with various Weak classifiers:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
AdaBoost :
AdaBoost (Adaptive Boosting) generates a sequence of hypothesis and combines them with weights.

::Choosen Weak classifiers::
1. GDA
2. Knn (NumNeighbors = 30)
3. Naive Bayes
4. Linear (Logistic Regression*)
5. SVM ('KernelFunction: rbf')

Refer to: https://www.iist.ac.in/sites/default/files/people/in12167/adaboost.pdf

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Contents:
1. Initialization (Dataset:: NoisyData.csv)
2. Gaussian Discriminant Analysis Classification
3. Knn Classification
4. Naive Bayes Classification
5. Logistic Regression
6. SVM (rbf) Classification
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
| Adaboost (GDA, Knn, NB, Logistic, SVM) |
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
7. Conclusions

Related Examples:
1. SVM
https://in.mathworks.com/matlabcentral/fileexchange/63158-support-vector-machine

2. SVM using various kernels
https://in.mathworks.com/matlabcentral/fileexchange/63033-svm-using-various-kernels

3. SVM for nonlinear classification
https://in.mathworks.com/matlabcentral/fileexchange/63024-svm-for-nonlinear-classification

4. SMO
https://in.mathworks.com/matlabcentral/fileexchange/63100-smo--sequential-minimal-optimization-

5. AdaBoost+ PCA
https://in.mathworks.com/matlabcentral/fileexchange/63161-adaboost--pca--capstone-project-

Comments and Ratings (5)

Hello is it possible to use MLP as weak classifier?

Aruna N

Error using horzcat
Dimensions of matrices being concatenated are not consistent.

Error in adaboost (line 17)
a=[Xtrain Ytrain];

Error in MAIN (line 180)
[result,u]=adaboost( Trainfea, label,featq);

ahmed usama

thank you for that
need the reference paper
ahmed

No One

MATLAB Release Compatibility
Created with R2015a
Compatible with any release
Platform Compatibility
Windows macOS Linux