False Position (Linear Interpolation) Numerical Method
% Inputs: with examples
% AF = anonymous function equation: AF = @(x) 1-((20^2)./(9.81*(((3*x)+((x.^2)/2)).^3))).*(3+x);
% xb = initial guess x bracket = [xL xU], where xL = lower boundary x and xU = upper boundary x: xb = [0 2.5];
% ed = desired approximate relative error = |(current - previous)/current|: ed = 0.01;
% Outputs
% xR = x root
% err = approximate relative error
% n = number of iterations
% xRV = x root vector
% errV = approximate relative error vector
% AFD1 = anonymous function 1st derivative
% AFD2 = anonymous function 2nd derivative
Cite As
Roche de Guzman (2024). False Position (Linear Interpolation) Numerical Method (https://www.mathworks.com/matlabcentral/fileexchange/61686-false-position-linear-interpolation-numerical-method), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- MATLAB > Mathematics > Interpolation >
Tags
Acknowledgements
Inspired: Numerical Methods
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |