Ahmed-ElTahan/Determinist​ic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-2nd-Method

Application of Indirect Self-tuning Regulator Adaptive Control. Two degree controller, 2nd Method.
226 Downloads
Updated 8 Jul 2016

# Deterministic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-2nd-Method
It's intended to apply the self-tuning regulator for a given system
such as
y z^(-d) Bsys
Gp = ------ = ----------------------
u Asys

the controller is given in the form of

T S
u = ------ uc - ------ y = L1 - L2
R R

the closed loop transfer function
y z^(-d)BsysT z^(-d)BsysT z^(-d)BsysT
------ = ---------------------------------- = ------------------- = -------------------
uc AsysR + z^(-d)BsysS Am A0 alpha

where
-- y : output of the system
-- u : control action (input to the system)
-- uc : required output (closed loop input-reference, command signal)
-- err = error between the required and the output --> = uc - y
-- Asys = 1 + a_1 z^-1 + a_2 z^-1 + ... + a_na z^(-na)
-- Bsys = b_0 + b_1 z^-1 + b_2 z^-1 + ... + b_nb z^(-nb)
-- R = 1 + r_1 z^-1 + r_2 z^-1 + ... + r_nr z^(-nr) --> [1, r_1, r_2, r_3, ..., r_nr]
-- S = s_0 + s_1 z^-1 + s_2 z^-1 + ... + s_ns z^(-ns) --> [s_0, s_1, s _2, s_3, ..., s_ns]
-- T : another choice that to affect the close loop zeros and it's determined based
on several ways. Here use T = z^(-n)/B, n >=d, choose n = d
-- d : delay in the system. Notice that this form of the Diaphontaing solution
is available for systems with d>=1
-- Am = required polynomial of the model = 1+m_1 z^-1 + m_2 z^-1 + ... + m_nm z^(-m_nm)
-- A0 = observer polynomail for compensation of the order = 1 + o_1 z^-1 + o_2 z^-1 + ... + o_no z^(-no)
-- alpha:required characteristic polynomial = Am A0 = 1 + alpha1 z^-1 + alpha2 z^-1 + ... + alpha_(nalpha z)^(-nalpha)

Steps of solution:
1- initialization of the some parameters (theta0, P, Asys, Bsys, S, R, T, y, u, err, dc_gain).
2- assume at first the controllers are unity. Get u, y of the system
3- RLS and get A, B estimated for the system.
4- Solve the Diophantine equation using A, B and the specified "alpha = AmA0" and get S, R of the controller.
5- choose T = z^(-n)/B, n >=d, choose n = d
5- find "u" due to this new controller and then "y"

T S
u = ------ uc - ------ y
R R

6- repeat from 3 till the system converges.

Function Inputs and Outputs
Inputs
uc: command signal (column vector)
Asys = [1, a_1, a_2, a_3, ..., a_na] ----> size(1, na)
Bsys = [b_0, b_1, b _2, b_3, ..., a_nb]----> size(1, nb)
d : delay in the system (d>=1)
Ts : sample time (sec.)
Am = [1, m_1, m_2, m_3, ..., m_nm]---> size(1, nm)
A0 = [1, o_1, o_2, o_3, ..., o_no]---> size(1, no)

Outputs
Theta_final : final estimated parameters
Gz_estm : estimated pulse transfer function
Gc1: first controller S/R
Gc2: second controller T/R
Gcl = closed loop transfer function

Note: in order to acheive the dc gain which is the y_ss/uc_ss we may use
here T = T/dc_gain

Cite As

Ahmed ElTahan (2024). Ahmed-ElTahan/Deterministic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-2nd-Method (https://github.com/Ahmed-ElTahan/Deterministic-Indirect-Self-Tuning-Regulator-Two-Degree-Controller-2nd-Method), GitHub. Retrieved .

MATLAB Release Compatibility
Created with R2014a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Adaptive Control in Help Center and MATLAB Answers
Communities

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versions that use the GitHub default branch cannot be downloaded

Version Published Release Notes
1.0.0.0

To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.