Feature fusion using Canonical Correlation Analysis (CCA)

Feature level fusion using Canonical Correlation Analysis (CCA)
3K Downloads
Updated 31 Jan 2020

Feature fusion is the process of combining two feature vectors to obtain a single feature vector, which is more discriminative than any of the input feature vectors.
CCAFUSE applies feature level fusion using a method based on Canonical Correlation Analysis (CCA). It gets the train and test data matrices from two modalities X and Y, and consolidates them into a single feature set Z.

Details can be found in:

M. Haghighat, M. Abdel-Mottaleb, W. Alhalabi, "Fully Automatic Face Normalization and Single Sample Face Recognition in Unconstrained Environments," Expert Systems With Applications, vol. 47, pp. 23-34, April 2016. http://dx.doi.org/10.1016/j.eswa.2015.10.047

(C) Mohammad Haghighat, University of Miami
haghighat@ieee.org
PLEASE CITE THE ABOVE PAPER IF YOU USE THIS CODE.

Cite As

Haghighat, Mohammad, et al. “Fully Automatic Face Normalization and Single Sample Face Recognition in Unconstrained Environments.” Expert Systems with Applications, vol. 47, Elsevier BV, Apr. 2016, pp. 23–34, doi:10.1016/j.eswa.2015.10.047.

View more styles
MATLAB Release Compatibility
Created with R2015b
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Dimensionality Reduction and Feature Extraction in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Versions that use the GitHub default branch cannot be downloaded

Version Published Release Notes
1.0.1

Updated the references

1.0.0.0

To view or report issues in this GitHub add-on, visit the GitHub Repository.
To view or report issues in this GitHub add-on, visit the GitHub Repository.