Chebyshev to monomial basis
B = CHEB2MON(A) converts polynomial A given in Chebyshev basis to
monomial basis B. The polynomial must be given with its coefficients in
descending order, i.e. A = A_N*T_N(x) + ... + A_1*T_1(x) + A_0*T_0(x)
Example:
Suppose we have a polynomial in Chebyshev basis:
a2*T_2(x) + a1*T_1(x) + a0*T_0(x), where T_0=1, T_1=x, T_2=2x^2-1
and for example a2=1, a1=0, a0=-1.
We want to express the polynomial in the monomial base {1,x,x^2), i.e.
a2*T_2(x) + a1*T_1(x) + a0*T_0(x) = b2*x^2 + b1*x + b0,
where b = [b2 b1 b0] is sought.
Solution:
a = [1 0 -1];
b = cheb2mon(a);
Cite As
Zoltán Csáti (2024). Chebyshev to monomial basis (https://www.mathworks.com/matlabcentral/fileexchange/50354-chebyshev-to-monomial-basis), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |