Monomial to Chebyshev basis
A = MON2CHEB(B) converts polynomial B given in monomial basis to
Chebyshev basis A. The polynomial must be given with its coefficients
in descending order, i.e. B = B_N*x^N + ... + B_1*x + B_0
Example:
Suppose we have a polynomial in the monomial basis:
b2*x^2 + b1*x + b0,
with b2=2, b1=0, b0=-2 for example.
We want to express the polynomial in the Chebyshev base
{T_0(x),T_1(x),T_2(x)}, where T_0=1, T_1=x, T_2=2x^2-1, i.e.
a2*T_2(x) + a1*T_1(x) + a0*T_0(x) = b2*x^2 + b1*x + b0,
where a = [a2 a1 a0] is sought.
Solution:
b = [2 0 -2];
a = mon2cheb(b);
Cite As
Zoltán Csáti (2024). Monomial to Chebyshev basis (https://www.mathworks.com/matlabcentral/fileexchange/50353-monomial-to-chebyshev-basis), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.