Galerkins method for solving 2nd-order homogeneous, constant coefficients BVP
The purpose of this program is to implement Galerkin method over the entire domain for solving the following general 2nd order, homogeneous, Boundary Value problem (BVP) with constant coefficients, and then comparing the answer with the exact solution.
ax"(t)+bx'(t)+cx(t)=0 for t1<=t<=t2
BC: x(t1)=x1 and x(t2)=x2
>> BVP_Galerkin1(a,b,c,t1,t2,x1,x2,n)
where "n" is the number of trial functions.
The output of this program is
1- The approximated solution of x(t) vs. exact solution of x(t)
2- The approximated x'(t) vs. exact x'(t)
3- The approximated x"(t) vs. exact x"(t)
Example:
x"(t)+ x'(t)+ x(t)=0
Boundary values:
x(1)=2, x(10)=0;
Solution: We have: a=1; b=1; c=1;
t1=1; t2=10;
x1=2; x2=0;
Using n=8 trial functions,
>>BVP_Galerkin(1,2,3,1,10,2,0,8)
Cite As
Dr. Redmond Ramin Shamshiri (2023). Galerkins method for solving 2nd-order homogeneous, constant coefficients BVP (https://www.mathworks.com/matlabcentral/fileexchange/39794-galerkins-method-for-solving-2nd-order-homogeneous-constant-coefficients-bvp), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
BVP_Galerkin1/
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 |