Improving MATLAB® performance when solving financial optimization problems

Jorge Paloschi,PHD and Sri Krishnamurthy,CFA May 2011
1.1K Downloads
Updated 1 Sep 2016

View License

Optimization algorithms are commonly used in the financial industry with examples including Markowitz portfolio optimization, Asset-Liability management, credit-risk management, volatility surface estimation etc. Many optimization problems involve nonlinear objective functions and constraints. These problems can be computationally expensive, especially with numerically estimated gradients. We have seen many cases where optimizations were sped up by incorporating pre-computed analytical derivatives.
In the Wilmott Magazine May 2011 article, we illustrate how optimization problems can be sped up using this approach with MATLAB® and Symbolic Math Toolbox™.

A copy of the article is included in the submission

Cite As

Jorge Paloschi (2024). Improving MATLAB® performance when solving financial optimization problems (https://www.mathworks.com/matlabcentral/fileexchange/33597-improving-matlab-performance-when-solving-financial-optimization-problems), MATLAB Central File Exchange. Retrieved .

MATLAB Release Compatibility
Created with R2011a
Compatible with any release
Platform Compatibility
Windows macOS Linux
Categories
Find more on Financial Toolbox in Help Center and MATLAB Answers

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!
Version Published Release Notes
1.0.0.1

Updated license

1.0.0.0