Improving MATLAB® performance when solving financial optimization problems
Optimization algorithms are commonly used in the financial industry with examples including Markowitz portfolio optimization, Asset-Liability management, credit-risk management, volatility surface estimation etc. Many optimization problems involve nonlinear objective functions and constraints. These problems can be computationally expensive, especially with numerically estimated gradients. We have seen many cases where optimizations were sped up by incorporating pre-computed analytical derivatives.
In the Wilmott Magazine May 2011 article, we illustrate how optimization problems can be sped up using this approach with MATLAB® and Symbolic Math Toolbox™.
A copy of the article is included in the submission
Cite As
Jorge Paloschi (2024). Improving MATLAB® performance when solving financial optimization problems (https://www.mathworks.com/matlabcentral/fileexchange/33597-improving-matlab-performance-when-solving-financial-optimization-problems), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.