Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter
The Kalman filter can be interpreted as a feedback approach to minimize the least equare error. It can be applied to solve a nonlinear least square optimization problem. This function provides a way using the unscented Kalman filter to solve nonlinear least square optimization problems. Three examples are included: a general optimization problem, a problem to solve a set of nonlinear equations represented by a neural network model and a neural network training problem.
This function needs the unscented Kalman filter function, which can be download from the following link:
http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18217&objectType=FILE
Cite As
Yi Cao (2024). Nonlinear least square optimization through parameter estimation using the Unscented Kalman Filter (https://www.mathworks.com/matlabcentral/fileexchange/18356-nonlinear-least-square-optimization-through-parameter-estimation-using-the-unscented-kalman-filter), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Platform Compatibility
Windows macOS LinuxCategories
- Control Systems > System Identification Toolbox > Online Estimation >
- Mathematics and Optimization > Optimization Toolbox > Least Squares >
Tags
Acknowledgements
Inspired by: Learning the Unscented Kalman Filter, Unconstrained Optimization using the Extended Kalman Filter
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.
Version | Published | Release Notes | |
---|---|---|---|
1.0.0.0 | update description |