Covariance from standard deviation and correlation (covcorr)
Version 1.0.3 (1.49 KB) by
Gregory Pelletier
This MATLAB function converts standard deviation and the correlation matrix to a covariance matrix
This MATLAB function converts standard deviation and correlation to covariance
INPUTS:
psigma = vector of standard deviations for each of any number of variables or parameters
prho = correlation matrix of the correlations between each each variable or parameter
OUTPUTS:
pcov = covariance matrix between variables or parameters
EXAMPLE:
load hospital
X = [hospital.Weight hospital.BloodPressure];
% Find the correlation matrix for the variables X:
prho = corrcoef(X)
% prho =
% 1.0000 0.1558 0.2227
% 0.1558 1.0000 0.5118
% 0.2227 0.5118 1.0000
% Find the standard deviations of each variable X
psigma = std(X)
% psigma =
% 26.5714 6.7128 6.9325
% Find the covariance matrix between variables X:
pcov = covcorr(psigma,prho)
% pcov =
% 706.0404 27.7879 41.0202
% 27.7879 45.0622 23.8194
% 41.0202 23.8194 48.0590
Cite As
Gregory Pelletier (2024). Covariance from standard deviation and correlation (covcorr) (https://www.mathworks.com/matlabcentral/fileexchange/158046-covariance-from-standard-deviation-and-correlation-covcorr), MATLAB Central File Exchange. Retrieved .
MATLAB Release Compatibility
Created with
R2023b
Compatible with any release
Platform Compatibility
Windows macOS LinuxTags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!Discover Live Editor
Create scripts with code, output, and formatted text in a single executable document.