Sampling data at x_n=cos(n*pi/N) for fft derivative

3 views (last 30 days)
Ole
Ole on 14 Aug 2021
Commented: Ole on 14 Aug 2021
I am trying to find the derivative of nonperiodic function with chebyshev polynomials.
The function below is from 'Spectral methods in Matlab'. It expects that the vector v is sampled at x_n=cos(n*pi/N).
x = linspace(1,10,10);
y = rand(1,10)*10;
How to sample y at x_n = cos(n*pi/N) assuming domain [-1,1]
function w = chebfft(v)
N = length(v)-1; if N==0, w=0; return, end
x = cos((0:N)'*pi/N);
ii = 0:N-1;
v = v(:); V = [v; flipud(v(2:N))]; % transform x -> theta
U = real(fft(V));
W = real(ifft(1i*[ii 0 1-N:-1]'.*U));
w = zeros(N+1,1);
w(2:N) = W(2:N)./sqrt(1-x(2:N).^2); % transform theta -> x
w(1) = sum(ii'.^2.*U(ii+1))/N + .5*N*U(N+1);
w(N+1) = sum((-1).^(ii+1)'.*ii'.^2.*U(ii+1))/N + ...
.5*(-1)^(N+1)*N*U(N+1);

Answers (1)

Sulaymon Eshkabilov
Sulaymon Eshkabilov on 14 Aug 2021
I'd see here to use logical indexing for sampling. E.g.:
N=10; y=rand(1,N)*10;
x_n = cos((0:N)'*pi/N);
Y_Sampled=y(x_n>=0);
  1 Comment
Ole
Ole on 14 Aug 2021
It should be interpolated in general data. What I do not get is x_n is from 1 to -1.

Sign in to comment.

Categories

Find more on Fourier Analysis and Filtering in Help Center and File Exchange

Products

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!