Evaluate Replicator Neural Network for Anomalydetection
3 views (last 30 days)
Show older comments
Hi,
i am trying to evaluate a Replicator Neural Network for Anomalydetection. For training i am using "normal" Data, without any Anomalies. For Evaluation i only have "normal" Data as well. Thats why i cant use (ROC,AUC....). Do you have any Idea how to evaluate Anomaly-Detection without Anomalies in Evaluation/Testing Data?
I appreciate your help. Thanks
0 Comments
Answers (1)
Jayant Gangwar
on 4 Oct 2022
Edited: Jayant Gangwar
on 4 Oct 2022
Hi Marvin,
You can use parameters like precision, recall, F1 score to evaluate the Anomaly Detection model you have trained but the results won't be meaningful as you have trained the model with data having no anomalies, therefore it is not trained to detect the anomalies. If the evaluation dataset also does not contain any anomalies, then there is a high probability that the scores will be really good but that doesn't ensure that the model is good and would also be able to detect anomalies in a future dataset.
Try to reduce the imbalance in the data to ensure a good model is trained that can detect both anomalies and normal data with high accuracy.
0 Comments
See Also
Categories
Find more on Sequence and Numeric Feature Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!