# Solving equations using Laplace transform

16 views (last 30 days)
Aleem Andrew on 14 Jan 2021
Answered: Logeshwari S on 19 Nov 2021
I am trying to solve an equation using the Laplace transform without having to find the Laplace transforms of the terms in the equation. Matlab is unable to find a solution based on the code below, although a solution can be found by writing the terms as a function of s. Could someone please suggest a method to do this?
syms y(t)
Dy2 = diff(y,t,2); Dy1 = diff(y,t,1);
eqn = laplace(Dy2+3*Dy1+2*y) == laplace(exp(-t))
cond = [y(0)==4, Dy(0)==5];
sol = dsolve(eqn,cond)
f

Star Strider on 14 Jan 2021
Unless you are solving a partial differential equation, such that the Laplace transform produces an ordinary differential equation in one of the two variables and a Laplace transform of ‘t’, dsolve is not appropriate. It is simply necessary to solve for (in this instance) ‘Y(s)’ and then invert it to get ‘y(t)’:
syms t y(t) Y(s) Dy0
Dy2 = diff(y,t,2);
Dy1 = diff(y,t,1);
eqn = laplace(Dy2+3*Dy1+2*y == exp(-t))
eqn = subs(eqn, {laplace(y(t), t, s), subs(diff(y(t), t), t, 0)},{Y(s), Dy0})
cond = [y(0)==4, Dy1(0)==5];
Soln_s = isolate(eqn, Y(s))
Soln_t = ilaplace(Soln_s)
Soln_t = subs(Soln_t, {ilaplace(Y(s), s, t)}, {y(t)})
Soln_t = simplify(Soln_t, 'Steps',500)
.
Star Strider on 14 Jan 2021
As always, my pleasure!

Logeshwari S on 19 Nov 2021
clear all clc syms x w f=input('Enter the function of x: '); F=laplace(f,x,w); disp('Laplace transform of f(t) = '); disp(F);