How to choose the right time and frequency vectors?
7 views (last 30 days)
Show older comments
I am trying to create a multisin function looking like:
multisin = sin(2*pi*1000*t) + sin(2*pi*2000*t) + sin(2*pi*3000*t);
I want to plot it in time domain: [-25ms, 25ms] ; and frequency domain: [-4kHz, 4kHz].
I have implemented it this way:
fs = 100000; %sampling frequency
t = linspace(-0.0025, 0.0025, fs);
f = linspace(-4000, 4000, fs);
fft_multisin = fft(multisin);
fft_multisin = fftshift(fft_multisin);
subplot(2,1,1)
plot(t, multisin)
subplot(2,1,2)
plot(f, fft_multisin)
But when I see the plot of fft it is not correct. Impulse should be by the frequencies 1000, 2000 and 3000 but by plot they are near 0. Can someone help me?
0 Comments
Answers (1)
Mathieu NOE
on 8 Jan 2021
hello
see example below :
the notch filter simu is a bonus
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% load signal
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% dummy data
Fs = 10000;
samples = 25000;
t = (0:samples-1)'*1/Fs;
signal = sin(2*pi*1000*t)+sin(2*pi*2000*t)+sin(2*pi*3000*t)+1e-3*rand(samples,1);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% FFT parameters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
NFFT = 1000; %
Overlap = 0.75;
w = hanning(NFFT); % Hanning window / Use the HANN function to get a Hanning window which has the first and last zero-weighted samples.
%% notch filter section %%%%%%
% H(s) = (s^2 + 1) / (s^2 + s/Q + 1)
fc = 1000; % notch freq
wc = 2*pi*fc;
Q = 5; % adjust Q factor for wider (low Q) / narrower (high Q) notch
% at f = fc the filter has gain = 0
w0 = 2*pi*fc/Fs;
alpha = sin(w0)/(2*Q);
b0 = 1;
b1 = -2*cos(w0);
b2 = 1;
a0 = 1 + alpha;
a1 = -2*cos(w0);
a2 = 1 - alpha;
% analog notch (for info)
num1=[1/wc^2 0 1];
den1=[1/wc^2 1/(wc*Q) 1];
% digital notch (for info)
num1z=[b0 b1 b2];
den1z=[a0 a1 a2];
freq = linspace(fc-1,fc+1,200);
[g1,p1] = bode(num1,den1,2*pi*freq);
g1db = 20*log10(g1);
[gd1,pd1] = dbode(num1z,den1z,1/Fs,2*pi*freq);
gd1db = 20*log10(gd1);
figure(1);
plot(freq,g1db,'b',freq,gd1db,'+r');
title(' Notch: H(s) = (s^2 + 1) / (s^2 + s/Q + 1)');
legend('analog','digital');
xlabel('Fréquence (Hz)');
ylabel(' dB')
% now let's filter the signal
signal_filtered = filtfilt(num1z,den1z,signal);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% display : averaged FFT spectrum before / after notch filter
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
[freq,fft_spectrum] = myfft_peak(signal, Fs, NFFT, Overlap);
sensor_spectrum_dB = 20*log10(fft_spectrum);% convert to dB scale (ref = 1)
% demo findpeaks
df = mean(diff(freq));
[pks,locs]= findpeaks(sensor_spectrum_dB,'SortStr','descend','NPeaks',3);
[freq,fft_spectrum_filtered] = myfft_peak(signal_filtered, Fs, NFFT, Overlap);
sensor_spectrum_filtered_dB = 20*log10(fft_spectrum_filtered);% convert to dB scale (ref = 1)
figure(2),plot(freq,sensor_spectrum_dB,'b',freq,sensor_spectrum_filtered_dB,'r');grid
title(['Averaged FFT Spectrum / Fs = ' num2str(Fs) ' Hz / Delta f = ' num2str(freq(2)-freq(1)) ' Hz ']);
legend('before notch filter','after notch filter');
xlabel('Frequency (Hz)');ylabel(' dB')
text(freq(locs)+df,pks,num2str(freq(locs)))
function [freq_vector,fft_spectrum] = myfft_peak(signal, Fs, nfft, Overlap)
% FFT peak spectrum of signal (example sinus amplitude 1 = 0 dB after fft).
% Linear averaging
% signal - input signal,
% Fs - Sampling frequency (Hz).
% nfft - FFT window size
% Overlap - buffer overlap % (between 0 and 0.95)
signal = signal(:);
samples = length(signal);
% fill signal with zeros if its length is lower than nfft
if samples<nfft
s_tmp = zeros(nfft,1);
s_tmp((1:samples)) = signal;
signal = s_tmp;
samples = nfft;
end
% window : hanning
window = hanning(nfft);
window = window(:);
% compute fft with overlap
offset = fix((1-Overlap)*nfft);
spectnum = 1+ fix((samples-nfft)/offset); % Number of windows
% % for info is equivalent to :
% noverlap = Overlap*nfft;
% spectnum = fix((samples-noverlap)/(nfft-noverlap)); % Number of windows
% main loop
fft_spectrum = 0;
for i=1:spectnum
start = (i-1)*offset;
sw = signal((1+start):(start+nfft)).*window;
fft_spectrum = fft_spectrum + (abs(fft(sw))*4/nfft); % X=fft(x.*hanning(N))*4/N; % hanning only
end
fft_spectrum = fft_spectrum/spectnum; % to do linear averaging scaling
% one sidded fft spectrum % Select first half
if rem(nfft,2) % nfft odd
select = (1:(nfft+1)/2)';
else
select = (1:nfft/2+1)';
end
fft_spectrum = fft_spectrum(select);
freq_vector = (select - 1)*Fs/nfft;
end
0 Comments
See Also
Categories
Find more on Fourier Analysis and Filtering in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!