# How to know which plot is more linear then the other?

5 views (last 30 days)
Meshooo on 26 Nov 2020
Commented: Meshooo on 21 Dec 2020
Dear all,
I have two datasets arrays:
A = [0
0.423891532
0.819380304
1.289479809
1.739548357
2.288748183
2.8990623
3.618974647
4.402757506
5.268816221
6.240886445
7.278958674
8.321358342
9.369407383
10.37825178
11.17417756
12.02774088
12.69808163
13.49653247
14.36958724
15.50198578
16.68295148
20.09421834]
%%
B = [0
0.406558949
0.771247013
1.123943155
1.487752056
1.915016538
2.365427777
2.852526752
3.419995212
3.933726314
4.436914792
4.958793052
5.510476759
5.961517074
6.415268974
6.843890692
7.102927349
7.118216122
7.677116245
8.751585797
9.636923065
10.32502819
12.9488068]
%%
plot(A, 'green')
hold on
plot(B, 'blue')
hold off
%%
Both A and B are nonlinear curves, but B seems to be more linear (less curvature) than A.
How can I show such information numerically?
Any sugguestion will be appreciated.
Best,
Meshoo

Ameer Hamza on 26 Nov 2020
You can see the residual error with linear fit to see which dataset is more linear
[~, eA] = polyfit(1:numel(A), A, 1)
[~, eB] = polyfit(1:numel(B), B, 1)
Result
>> eA.normr
ans =
4.0713
>> eB.normr
ans =
2.8868
Vector 'B' is more linear as compared to A.
Mustafa Sami on 15 Dec 2020
Thank you very much Ameer.
Is there any range (maximum and minimum) for eA.normr?
Meshooo on 21 Dec 2020
Thank you Ameer.

KSSV on 26 Nov 2020
How about finding the area bounded by the curves..which ever has least area is straight.
A = [0
0.423891532
0.819380304
1.289479809
1.739548357
2.288748183
2.8990623
3.618974647
4.402757506
5.268816221
6.240886445
7.278958674
8.321358342
9.369407383
10.37825178
11.17417756
12.02774088
12.69808163
13.49653247
14.36958724
15.50198578
16.68295148
20.09421834]
%%
B = [0
0.406558949
0.771247013
1.123943155
1.487752056
1.915016538
2.365427777
2.852526752
3.419995212
3.933726314
4.436914792
4.958793052
5.510476759
5.961517074
6.415268974
6.843890692
7.102927349
7.118216122
7.677116245
8.751585797
9.636923065
10.32502819
12.9488068]
%%
plot(1:length(A),A, 'g')
hold on
plot(1:length(B),B, 'b')
%%
x = [1:length(A)]' ;
L1 = [[x ; x(1)] [A ;A(1)]] ;
L2 = [[x ;x(1)] [B;B(1)]] ;
patch(L1(:,1),L1(:,2),'r')
hold on
patch(L2(:,1),L2(:,2),'b')
A1 = polyarea(L1(:,1),L1(:,2)) ;
A2 = polyarea(L2(:,1),L2(:,2)) ;

### Categories

Find more on Get Started with Curve Fitting Toolbox in Help Center and File Exchange

R2020b

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!