Fit model with 3 independent variables and many parameters to data
58 views (last 30 days)
Show older comments
is it possible to fit the parameters of a non linear model with more than 2 independent variable (let's say 3 or 4 for example) to data???
here attached is my code, where the coefficients are a b c d and the independent variables are x,q,w
function [beta]=fitgen(Xtest,Ytest,Wtest,Ztest,p,p_low,p_up)
mdl=@(a,b,c,d,w,q,x) zfit(a,b,c,d,w,q,x);
algo1='Trust-Region';
fit_opt = fitoptions('Method','NonlinearLeastSquares',... 'Lower',p_low,'Upper',p_up,... 'Robust','on',... 'Normalize','off',... 'Algorithm',algo1); fit_typ = fittype(mdl,'option',fit_opt);
[Yfitt,gof,output]=fit([Xtest,Ytest,Wtest],Ztest,fit_typ,'Start',p)
%%where the function zfit is (I used a linear model just for sake of simplicity, but the final purpose is to fit a non linear model):
function [z]=zfit(a,b,c,d,w,q,x)
[x,q,w]=meshgrid(x,q,w);
z=a*x+b*q+c*w+d;
end
thank you very much in advance
0 Comments
Accepted Answer
the cyclist
on 11 Feb 2013
Yes, if you have the Statistics Toolbox you can use the nlinfit() function to do this. Here is a very simple example.
function [] = nlinfitExample()
% Here is an example of using nlinfit(). For simplicity, none of
% of the fitted parameters are actually nonlinear!
% Define the data to be fit
x=(0:1:10)'; % Explanatory variable
y = 5 + 3*x + 7*x.^2; % Response variable (if response were perfect)
y = y + 2*randn((size(x)));% Add some noise to response variable
% Define function that will be used to fit data
% (F is a vector of fitting parameters)
f = @(F,x) F(1) + F(2).*x + F(3).*x.^2;
F_fitted = nlinfit(x,y,f,[1 1 1]);
% Display fitted coefficients
disp(['F = ',num2str(F_fitted)])
% Plot the data and fit
figure
plot(x,y,'*',x,f(F_fitted,x),'g');
legend('data','fit')
end
In my case, I just have one explanatory variable vector, x, but that could have been a matrix with multiple variables in each column.
Hope that helps.
2 Comments
nony lew
on 16 Apr 2018
I have used this answer of yours to fit my datas. And it went perfectly for me too, thank you.
x=[4.3...]; y=[11987.36...];
f = @(F,x) F(1)*x +F(2)+F(3)*(sin(F(4)*x+F(5))); F_fitted = nlinfit(x,y,f,[1 1 1 1 1]); % Display fitted coefficients disp(['F = ',num2str(F_fitted)]) % Plot the data and fit figure plot(x,y,'*',x,f(F_fitted,x),'r'); legend('data','fit')
I have another question:
How can I modify this code to apply to structures?
if in my case:
x = xdata (k) .part is a structure <1x200 struct>
and
how can i change the code to fetch every dataset?
Thanks
Thi Na Le
on 25 Mar 2020
More Answers (2)
Manuel
on 11 Feb 2013
1 Comment
the cyclist
on 11 Feb 2013
I suggest you ask this as a new question. Questions buried within other questions rarely get attention.
NgocDuy Nguyen
on 7 Oct 2021
Hello everyone,
I have tried to fit a function f(x,y,z) to determine F1, F2, F3, ...., F9 coefficients.
My code is as follows:
function [] = nlinfitExample()
[x1,x2,x3] = meshgrid(362:1,362:1,362:1);
[ff]=meshgrid(362:1);
f=[ff(x1,x2,x3)];
[F_fitted] = meshgrid(9:1);
[F] = meshgrid(9:1);
x = x1;
y = x2;
z = x3;
% Define function that will be used to fit data
% (F is a vector of fitting parameters)
f = @(F,x,y,z) F(1)*exp(-((x-20)^2+(y-20)^2)/12)+F(2)*exp(-((x-38)^2+(y-50)^2)/43)+F(3)*exp(-((x-350)^2+(y-82)^2)/13)+F(4)*exp(-((x-58)^2+(y-82)^2)/24)+F(5)*exp(-((x-70)^2+(y-110)^2)/244)+F(6)+(0.0000532793*x^2-5-F(7)*(y-x)/(y+x))*ln(z-F(8)*((-1)^x+(-1)^y))+F(9)*0.0000532793*x^2+0.0000177598*x^2*ln(x+y)-0.022930657*x;
%F_fitted = nlinfit(x,y,z,f,[F(1), F(2), F(3), F(4), F(5), F(6), F(7), F(8), F(9)]);
F_fitted = nlinfit(x,y,z,f, [1 1 1 1 1 1 1 1 1]);
% Display fitted coefficients
disp(['F = ',num2str(F_fitted)])
end
But it gives the error as follows:
Error:
Requires a vector second input argument.
Error in nlinfitExample (line 17)
F_fitted = nlinfit(x,y,z,f, [1 1 1 1 1 1 1 1 1]);
Could you please help me to solve this problem?
Thank you.
1 Comment
the cyclist
on 11 Oct 2021
Please open this as a new question, not making it an "answer" on a 8-year-old question
See Also
Categories
Find more on Linear and Nonlinear Regression in Help Center and File Exchange
Products
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!