Fill between two curves is not working

16 views (last 30 days)
Sim
Sim on 31 Aug 2020
Commented: Sim on 31 Aug 2020
Hi, I would need to fill up the area between two curves, and I tried to use the function fill as follows:
fill([x fliplr(x)],[curve2 fliplr(curve1)],'r')
However, I get this plot:
Any idea on how to fix it?
The inputs are:
x = [1:167]';
curve1 = [0.673996610286411
0.673673251337359
0.673415708189219
0.673217628041518
0.673072658093783
0.672974445545541
0.672916637596318
0.672892881445642
0.672896824293039
0.672922113338036
0.67296239578016
0.673011318818937
0.673062529653894
0.673109675484559
0.673146403510457
0.673166360931115
0.673163194946061
0.673130552754822
0.673062081556923
0.672951428551891
0.672792240939255
0.672583514699266
0.672345640935088
0.672104359530608
0.671885410369716
0.671714533336301
0.671617468314251
0.671619955187455
0.671747733839802
0.672026544155181
0.67246565118383
0.673008420641381
0.673581743409818
0.674112510371122
0.674527612407275
0.674753940400259
0.674718385232058
0.674347837784653
0.673569188940025
0.672309329580159
0.670495150587034
0.668113291382176
0.665389385545275
0.662608815195564
0.660056962452274
0.658019209434639
0.656780938261889
0.656627531053258
0.657714102816945
0.659674700117009
0.662013102406479
0.664233089138384
0.665838439765749
0.666332933741602
0.665220350518972
0.662147683851062
0.657334784691779
0.651144718295209
0.643940549915434
0.63608534480654
0.627942168222611
0.61987408541773
0.612132703790435
0.604523799317075
0.596741690118449
0.58848069431536
0.579435130028609
0.569299315378996
0.557767568487323
0.544711705519161
0.530713534819153
0.516532362776713
0.502927495781255
0.490658240222192
0.480483902488938
0.473163788970907
0.469457206057512
0.469890106166702
0.474055025830568
0.481311147609734
0.491017654064828
0.502533727756473
0.515218551245297
0.528431307091925
0.541531177856983
0.553877346101096
0.56482899438489
0.573882914265223
0.581086333283881
0.586624087978881
0.590681014888241
0.593441950549979
0.595091731502113
0.595815194282661
0.595797175429641
0.595218240981186
0.594241874975899
0.593027290952496
0.591733702449696
0.590520323006215
0.589546366160771
0.588971045452083
0.588953574418867
0.589653166599841
0.591229035533723
0.593840394759231
0.597565138943005
0.602155887263384
0.607283940026628
0.612620597538999
0.617837160106758
0.622604928036167
0.626595201633486
0.629558708460915
0.631563885104397
0.632758595405817
0.633290703207056
0.633308072349997
0.632958566676522
0.632390050028514
0.631750386247856
0.631187439176429
0.630849072656117
0.630851152682596
0.631181553866717
0.631796152973129
0.632650826766476
0.633701452011405
0.634903905472563
0.636214063914597
0.637587804102151
0.638981002799873
0.640349536772409
0.641649282784406
0.64283611760051
0.643865917985367
0.644707012443729
0.64537753644077
0.645908077181772
0.646329221872014
0.646671557716777
0.646965671921341
0.647242151690986
0.647531584230992
0.647864556746639
0.648264977818572
0.64873004152888
0.649250263335021
0.64981615869445
0.65041824306462
0.651047031902987
0.651693040667007
0.652346784814134
0.652998779801824
0.653639541087531
0.65425958412871
0.654849424382818
0.655399577307308
0.655900558359636
0.656342882997257
0.656717066677625
0.657013624858197
0.657223072996427
0.65733592654977
0.657342700975681
0.657233911731616
0.657000074275028];
curve2 = [0.672772576702148
0.672366853836992
0.671866640834829
0.67127815023829
0.670607594590004
0.6698611864326
0.669045138308709
0.668165662760959
0.667228972331981
0.666241279564404
0.665208797000857
0.664137737183971
0.663034312656375
0.661904735960698
0.66075521963957
0.659591976235622
0.658421218291481
0.657249158349779
0.656082008953144
0.654925982644206
0.653794448058048
0.652729398199563
0.651779982166097
0.650995349054996
0.650424647963607
0.650117027989274
0.650121638229345
0.650487627781166
0.651264145742082
0.65250034120944
0.654245363280585
0.656495636729907
0.65903668903996
0.661601323370342
0.663922342880652
0.665732550730486
0.666764750079442
0.666751744087119
0.665520664779371
0.663275959647084
0.6603164050474
0.656940777337462
0.653447852874412
0.650136408015393
0.647305219117548
0.645253062538019
0.644278714633949
0.64468095176248
0.646758550280755
0.650547128468748
0.655029672297751
0.658926009661891
0.66095596845529
0.659839376572075
0.654296061906368
0.643045852352296
0.624808575803982
0.598810171196179
0.566301021626156
0.52903762123181
0.488776464151038
0.447274044521737
0.406286856481804
0.367571394169136
0.33288415172163
0.303981623277182
0.282190940683338
0.267121786626229
0.257954481501636
0.253869345705336
0.254046699633111
0.25766686368074
0.263910158244002
0.271983520713369
0.281200356458082
0.290900687842075
0.300424537229282
0.309111926983635
0.316302879469068
0.321337417049515
0.323741109218905
0.323781713991152
0.321912536510165
0.318586881919852
0.314258055364123
0.309379361986887
0.304404106932054
0.299785595343532
0.29597713236523
0.293432023141058
0.292489460685004
0.293032189491368
0.294828841924531
0.297648050348872
0.301258447128771
0.305428664628609
0.309927335212765
0.314523091245618
0.318984565091549
0.323080389114938
0.326579195680164
0.329249617151608
0.330942039655212
0.331833864363177
0.332184246209265
0.332252340127239
0.332297301050863
0.332578283913898
0.33335444365011
0.334884935193259
0.337428913477111
0.341245533435426
0.346530720545872
0.353227482461721
0.36121559738015
0.370374843498336
0.380584999013454
0.39172584212268
0.403677151023192
0.416318703912164
0.429530278986773
0.443191654444197
0.457182608481609
0.471382919296188
0.485672365085109
0.499930724045548
0.514037774374681
0.527863503990741
0.541238739696186
0.553984518014528
0.565921875469282
0.576871848583961
0.586655473882078
0.595093787887147
0.602007827122682
0.607269681917838
0.61095565782434
0.613193114199558
0.614109410400857
0.613831905785607
0.612487959711174
0.610204931534926
0.607110180614231
0.603331066306458
0.598994947968972
0.594229184959143
0.589161136634337
0.583930417972631
0.578725666434929
0.573747775102845
0.569197637057991
0.565276145381981
0.562184193156428
0.560122673462945
0.559292479383144
0.559894503998639
0.562129640391043
0.566198781641968
0.572302820833029
0.580642651045837
0.591419165362006
0.604833256863149
0.621085818630879
0.64037774374681
0.662909925292553
0.688883256349722
0.71849862999993];
  2 Comments
Sim
Sim on 31 Aug 2020
Thanks a lot Adam! Yes, my silly mistake... :)

Sign in to comment.

Accepted Answer

Star Strider
Star Strider on 31 Aug 2020
Use the patch function instead:
figure
patch([x; flipud(x)], [curve1; flipud(curve2)], 'r')
producing:
.
  4 Comments
Sim
Sim on 31 Aug 2020
Thanks both Star and Bruno :) ...Yes, it was my stupid mistake :)

Sign in to comment.

More Answers (0)

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!