Resolve normal depth from Manning's equation
12 views (last 30 days)
Show older comments
Hello,
I aim to obtain the normal depth of a channel using Mannig's equation. Somehow I don't manage to resolve its value. Here it's the pieco of code that I'm using:
riverSlope=0.0114; % [m/m] - inletSlope, outletSlope or riverSlope
bottom_width=33.5937; % [m] - inlet or outlet bottom width
slope_Rbank=1.1336; % [m/m] - slope_Rbank_in or slope_Rbank_out
slope_Lbank=0.3334; % [m/m] - slope_Lbank_in or slope_Lbank_out
q=10; % [m3/s] - Flow discharge
n=0.04; % [-] - Manning's roughness coefficient
syms y
area=(bottom_width+(y/(2*slope_Rbank))+(y/(2*slope_Lbank)))*y;
wetted_perimeter=bottom_width+y*(sqrt(1+(1/slope_Rbank)^2)+sqrt(1+(1/slope_Lbank)^2));
manning_eqn=@(y)(1/n)*((area/wetted_perimeter)^(2/3))*(riverSlope^(1/2))*area==q;
soly=solve(manning_eqn,y)
I would really appreciate if someone can help to fix it in order to obtain the desired values and avoid the coding of an iteration loop for the manual calculation. Thanks in advance!!
Álvaro
0 Comments
Accepted Answer
Alan Stevens
on 1 Aug 2020
Edited: Alan Stevens
on 1 Aug 2020
This shoud do it:
depth0 = 1; % Initial guess
depth = fzero(@manningfn, depth0);
function manning = manningfn(y)
riverSlope=0.0114; % [m/m] - inletSlope, outletSlope or riverSlope
bottom_width=33.5937; % [m] - inlet or outlet bottom width
slope_Rbank=1.1336; % [m/m] - slope_Rbank_in or slope_Rbank_out
slope_Lbank=0.3334; % [m/m] - slope_Lbank_in or slope_Lbank_out
q=10; % [m3/s] - Flow discharge
n=0.04; % [-] - Manning's roughness coefficient
area=(bottom_width+(y/(2*slope_Rbank))+(y/(2*slope_Lbank)))*y;
wetted_perimeter=bottom_width+y*(sqrt(1+(1/slope_Rbank)^2)+sqrt(1+(1/slope_Lbank)^2));
manning = (1/n)*((area/wetted_perimeter)^(2/3))*(riverSlope^(1/2))*area-q;
end
3 Comments
Alan Stevens
on 1 Aug 2020
Yes, you could do this:
riverSlope=0.0114; % [m/m] - inletSlope, outletSlope or riverSlope
bottom_width=33.5937; % [m] - inlet or outlet bottom width
slope_Rbank=1.1336; % [m/m] - slope_Rbank_in or slope_Rbank_out
slope_Lbank=0.3334; % [m/m] - slope_Lbank_in or slope_Lbank_out
q=10; % [m3/s] - Flow discharge
n=0.04; % [-] - Manning's roughness coefficient
data =[riverSlope; bottom_width; slope_Rbank; slope_Lbank; q; n];
depth0 = 1; % Initial guess
depth = fzero(@manningfn, depth0,[],data);
function manning = manningfn(y, data)
riverSlope=data(1);
bottom_width=data(2);
slope_Rbank=data(3);
slope_Lbank=data(4);
q=data(5);
n=data(6);
area=(bottom_width+(y/(2*slope_Rbank))+(y/(2*slope_Lbank)))*y;
wetted_perimeter=bottom_width+y*(sqrt(1+(1/slope_Rbank)^2)+sqrt(1+(1/slope_Lbank)^2));
manning = (1/n)*((area/wetted_perimeter)^(2/3))*(riverSlope^(1/2))*area-q;
end
More Answers (0)
See Also
Categories
Find more on Numerical Integration and Differential Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!