How to simplify polynomial expansion?

7 views (last 30 days)
Hi Matlab Expert,
I would like to know whether a very long polynomial/ transfer function can be simplified into simple equation? Here is the example:
(204968618250053*(584538599205637399086599987135947635451994771705480410605494724605739664408576*z^2 + 422925278262421791614499596366110068734536615324831654028242248627900121088*z - 562034690169857024583161294350028872841265995589812041494482936727596957696000))/(386856262276681335905976320*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (447741983102391*(6981406932819801854409645172378584299508358365678721409026875796016332800*z^2 - 14060267183868235010495647745615491862070477638281599174319088939466489856*z + 7076949635759948779787857807944294354431191559659510600954019088246505472))/(142962266571249025024*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (5788597805039735*(196845455631738875350006527089503631641108477737992176481075200*z^2 + 213499342509751794414898651875580780507177983147674932525137920*z + 17492749683950302063970526297851198891671980880519887444770816))/(12781822672896*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (1024843091250265*(430627536192026783897911635856137629357959544584379917182598905856*z^2 + 4240917730283025791189675815432061078943960832707948157312434176*z + 692690418279477323535171459109694039392635377988006571178721280))/(6755399441055744*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (3731183192519925*(44411111195987892257013963188850689410654266331841974763520*z^2 + 87915803750142195349768749557328505454356254637028798365696*z + 8722123876189377499121331979872612611687774916817123803136))/(4160749568*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (6525747434972147*(- 11573813613581748956010638412113825149809693402020063798372600910038141415456768*z^2 + 220792948692657246210195123361446121736065131965637842292725081136480345128960*z + 11353020665395612576938494406006621945911326392702098405589742127336896606502912))/(49121460758843889307997249208320*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) - (32628737174860735*(431359146674410236714672241392314090778194310760649159697657763987456*z^3 - 418432845497916413092305581509467403560566486519288197204122454196224*z^2 + 4314153037836787092795079253967787795533372338423225076243924779008*z + 13992391003240178627509484721241720424970472273946691630794801152))/(857773599427494150144*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183)) + (1157719561007947*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^3 + 43127593764229068021205536538769243451079788478656972231027650840051748700160*z^2 + 2217781511180268625048049772868654016016138954548982171034168902274777088*z - 14193252661797991997041663248028912493491531820174568492234112553274000277504))/(731966804844795008122880*(- 28948022309329048855892746252171976963317496166410141009864396001978282409984*z^4 + 57027603102903937905953706302347020088167616191162366204531808022443679809536*z^3 - 28380639403170911505711693007325694555593766082052861983585512887619317399552*z^2 + 278131765835133701917335118393270798796155394262861496597754401087939411968*z + 9422688258172540988705649901718163109010916071792709435376038033183))
This is unreasonable equation yet it is supposed to be 4th order simple equation. It just shows all the lengthy number which I don't even know how to read. Can you guys come up with function to make this simple to read?
Thank you,
Raymond Sutjiono

Accepted Answer

Walter Roberson
Walter Roberson on 18 Apr 2011
Maple pretty quickly calculates it as the ratio of a cubic divided by a quartic. The coefficients involved are quite large.
You can get very long coefficients such as that if you input floating point numbers, as by default MuPad converts floating point numbers in to rational values. For example, in a problem earlier today someone wanted to use 0.707 which would have led to a _much _messier answer than what the probable value was, 1/sqrt(2)
I have confirmed that the numerator and denominator of the ratio do not have any roots in common (not even close), so it is not possible to reduce the expression to a polynomial instead of a ratio of polynomials.

More Answers (4)

Andrei Bobrov
Andrei Bobrov on 18 Apr 2011
factor(v)
ans =
(1050073985609136376117577180218721828864*z^3 - 1065633110957905273283671547044295504128*z^2 - 1005605039090954507740748057427872845024*z + 1030036145611443176612944407325409289073)/(34310943977099766005760*(19342813113834066795298816*z^4 - 38105341268646458384449536*z^3 + 18963692861661811782451200*z^2 - 185845192119942907953152*z - 6296157162660917))

Oleg Komarov
Oleg Komarov on 18 Apr 2011
syms z
% Now set f = ... all the expression here
f = simplify(f);

Raymond
Raymond on 18 Apr 2011
I used simplify, but it does not calculate the fraction itself. It still create very long fraction.
Any ideas?
Thank you anyway for your answer, Oleg

Raymond
Raymond on 18 Apr 2011
Thank you for all the response.
that helps me.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!