Least square fitting - lsqcurvefit - multiple equations - not enough input arguments -
1 view (last 30 days)
Show older comments
Mohammad Aljarrah
on 17 May 2020
Commented: Mohammad Aljarrah
on 18 May 2020
Hello everyone,
I am trying to fit some experimental data to a cerain model,
my data:
x_exp = [0.109112654
0.174029442
0.2775686
0.442708583
0.706098923
1.126193863
1.796225113
2.864892769
4.569366345
7.28791982
];
y_exp = [5247.044317
8170.755912
12604.15367
19261.43738
29160.90041
42700.48525
63815.24278
95016.30828
140804.9657
207196.2571
];
i want to fit this data using lsqcurvefit, but the problem is my model is not a one line code, it is contructed as follows, it has 4 parameters, o is the variable and my final output is G, i want to fit my y_exp with G:
% parameters are k , tau , Gg , G0
A = (o*tau)^-k * cos (k*pi/2);
B = (o*tau)^-k * sin (k*pi/2);
G1 = G0 + (((Gg-G0)* (1+A))/ (((1+A)^2)+B^2));
G2 = ((Gg-G0)* (-B)/ (((1+A)^2)+B^2));
G = ((G1^2 + G2^2)^0.5);
when i used lsqcurvefit, i constructed the code as follows, but i keep getting a message (Not enough input arguments):
% define A & B
A = @(x,xdata)(xdata*x(2))^-x(1) * cos (x(1)*pi/2);
B = @(x,xdata)(xdata*x(2))^-x(1) * sin (x(1)*pi/2);
% Define G' & G''
G1 = @(x,xdata)x(4) + (((x(3)-x(4))* (1+A(x)))/ (((1+A(x))^2)+B(x)^2));
G2 = @(x,xdata)((x(3)-x(4))* (-B(x))/ (((1+A(x))^2)+B(x)^2));
% Define G
G = @(x,xdata)((G1(x)^2 + G2(x)^2).^0.5);
x0 = [0.5 1E-4 1E+7 1E-5];
[x,resnorm,~,exitflag,output] = lsqcurvefit(G,x0,x_exp,y_exp)
can any one please help me with this?
0 Comments
Accepted Answer
Ameer Hamza
on 17 May 2020
There are few errors in writing the equations. Following code correct those
A = @(x,xdata)(xdata*x(2)).^-x(1) * cos (x(1)*pi/2);
B = @(x,xdata)(xdata*x(2)).^-x(1) * sin (x(1)*pi/2);
% Define G' & G''
G1 = @(x,xdata)x(4) + (((x(3)-x(4))* (1+A(x,xdata)))./(((1+A(x,xdata)).^2)+B(x,xdata).^2));
G2 = @(x,xdata)((x(3)-x(4))* (-B(x,xdata))./(((1+A(x,xdata)).^2)+B(x,xdata).^2));
% Define G
G = @(x,xdata)((G1(x,xdata).^2 + G2(x,xdata).^2).^0.5);
x0 = [0.5 1E-4 1E+7 1E-5];
[x,resnorm,~,exitflag,output] = lsqcurvefit(G,x0,x_exp,y_exp)
However, now the issue is that lsqcurvefit converges to a wrong output, which is not optimal. Are you sure your model is correct?
7 Comments
Ameer Hamza
on 18 May 2020
The solution posted by Alex is calculated using another optimization package, called 1stOpt. That is different software, so MATLAB code cannot be used in that.
More Answers (0)
See Also
Categories
Find more on Interpolation in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!