How to monitor Deep learning training

2 views (last 30 days)
Mustafa Yildiz
Mustafa Yildiz on 13 Apr 2020
Commented: Mohammad Sami on 13 Apr 2020
Hello i wanna monitor the training when its happening , how should i change the code for that ?
outputFolder = fullfile('faceset');
rootFolder = fullfile(outputFolder,'faces');
categories = {'Ali','amanda','Betul','Clarisse','Elizabet','Erica','Firdevs','Furkan','Gabia','Gabriela','Irem','Justa','Kadir','Laura','Mehmet','Merve','Mustafa','Oguz','Ruta','Vika','Yigit'}; %choosing the categories which is gonna go to training
imds = imageDatastore(fullfile(rootFolder,categories),'LabelSource','foldernames');
tbl = countEachLabel(imds);
minSetCount = min(tbl{:,2});
imds = splitEachLabel(imds, minSetCount,'randomize');
countEachLabel(imds);
Ali = find(imds.Labels == 'Ali',1);
amanda = find(imds.Labels == 'amanda',1);
net = resnet101();
net.Layers(1);
net.Layers(end);
[trainingSet,testSet] = splitEachLabel(imds,0.3,'randomize');
imageSize = net.Layers(1).InputSize;
augmentedTrainingSet = augmentedImageDatastore(imageSize,...
trainingSet,'ColorPreprocessing','gray2rgb');
augmentedTestSet = augmentedImageDatastore(imageSize,...
testSet,'ColorPreprocessing','gray2rgb');
w1 = net.Layers(2).Weights;
w1 = mat2gray(w1);
featureLayer = 'fc1000';
trainingFeatures = activations(net,augmentedTrainingSet,...
featureLayer,'MiniBatchSize',32,'OutputAs','columns');
trainingLables = trainingSet.Labels;
classifier=fitcecoc(trainingFeatures,...
trainingLables,'Learner','Linear','Coding','onevsall','ObservationsIn','columns');
testFeature = activations(net,augmentedTestSet,...
featureLayer,'MiniBatchSize',32,'OutputAs','columns');
predictLabels = predict(classifier, testFeature,'ObservationsIn','columns');
testLables = testSet.Labels;
confMat = confusionmat(testLables , predictLabels);
confMat = bsxfun(@rdivide , confMat , sum(confMat,2));
mean(diag(confMat));
  3 Comments
Mohammad Sami
Mohammad Sami on 13 Apr 2020
Matlab also provides a free online course on deep learning. You can check it out here

Sign in to comment.

Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!