Not a Number (NaN) values returned from a loop

3 views (last 30 days)
Hi everyone,
I am having trouble with the values being returned in my loops.
my k, w and f terms are stored in the workspace as NaN after i run my code.
I appreciate there may be a lot wrong with my loop and the terms within it but any help would be great.
Thanks.
clc
clear
% Parameters & Boundary Conditions
dTdz=30.12; Ri=0.05; Ro=0.075; Rm=0.0621; hcoeff=100; To=300; Ti=0; Zo=0; Zi=1.3*Ri*hcoeff*(Ti-To); uRi=0; uRo=0; tawi=4.3465; tawo=3.792; npoints=1000;
h=(Ro-Ri)/npoints;
r=(Ri+h:h:Ro)';
uR= zeros(npoints,1);
T= zeros(npoints,1);
Z = zeros(npoints,1);
%
% Call Runge Kutta Function Fourth Order
for i=1:(npoints-1)
T(1)=Ti;
Z(1)=Zi;
uR(1)= uRi;
if r(i)<Rm
k1=h*dUdrI(r(i),tawi,mu(T(i)),rho(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo),Rm,Ri);
w1=h*dTdr(Z(i),r(i),k(T(i)),rho(T(i)),Cp(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo));
f1=h*dZdr(r(i),rho(T(i)),Cp(T(i)),uR(i),dTdz);
k2=h*dUdrI((r(i)+h/2),tawi,mu(T(i)),rho(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo),Rm,Ri);
w2=h*dTdr(Z(i),(r(i)+h/2),k(T(i)),rho(T(i)),Cp(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo));
f2=h*dZdr((r(i)+h/2),rho(T(i)),Cp(T(i)),uR(i),dTdz);
k3=h*dUdrI((r(i)+h/2),tawi,mu(T(i)),rho(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo),Rm,Ri);
w3=h*dTdr(Z(i),(r(i)+h/2),k(T(i)),rho(T(i)),Cp(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo));
f3=h*dZdr((r(i)+h/2),rho(T(i)),Cp(T(i)),uR(i),dTdz);
k4=h*dUdrI((r(i)+h),tawi,mu(T(i)),rho(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo),Rm,Ri);
w4=h*dTdr(Z(i),(r(i)+h),k(T(i)),rho(T(i)),Cp(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo));
f4=h*dZdr((r(i)+h),rho(T(i)),Cp(T(i)),uR(i),dTdz);
uR(i+1) = uR(i) + (k1+2*k2+2*k3+k4)/6;
T(i+1) = T(i) + (w1+2*w2+2*w3+w4)/6;
Z(i+1) = Z(i) + (f1+2*f2+2*f3+f4)/6;
end
end
for i=(npoints-1):h:1
T(1)=To;
Z(1)=Zo;
uR(1)=uRo;
if r(i)>=Rm
k1=h*dUdrO(r(i),tawo,mu(T(i)),rho(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo),Rm,Ro);
w1=h*dTdr(Z(i),r(i),k(T(i)),rho(T(i)),Cp(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo));
f1=h*dZdr(r(i),rho(T(i)),Cp(T(i)),uR(i),dTdz);
k2=h*dUdrO((r(i)-h/2),tawo,mu(T(i)),rho(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo),Rm,Ro);
w2=h*dTdr(Z(i),(r(i)-h/2),k(T(i)),rho(T(i)),Cp(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo));
f2=h*dZdr((r(i)-h/2),rho(T(i)),Cp(T(i)),uR(i),dTdz);
k3=h*dUdrO((r(i)-h/2),tawo,mu(T(i)),rho(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo),Rm,Ro);
w3=h*dTdr(Z(i),(r(i)-h/2),k(T(i)),rho(T(i)),Cp(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo));
f3=h*dZdr((r(i)-h/2),rho(T(i)),Cp(T(i)),uR(i),dTdz);
k4=h*dUdrO((r(i)-h),tawo,mu(T(i)),rho(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo),Rm,Ro);
w4=h*dTdr(Z(i),(r(i)-h),k(T(i)),rho(T(i)),Cp(T(i)),epsilon_m_(r(i),T(i),Rm,Ri,Ro,tawi,tawo));
f4=h*dZdr((r(i)-h),rho(T(i)),Cp(T(i)),uR(i),dTdz);
uR(i+1)=uR(i)+(k1+2*k2+2*k3+k4)/6;
T(i+1)=T(i)+(w1+2*w2+2*w3+w4)/6;
Z(i+1)=Z(i)+(f1+2*f2+2*f3+f4)/6;
end
end
figure, plot (r,uR)
xlabel('Radius')
ylabel('Velocity')
title('Velocity vs Radius')
figure, plot (r,T)
xlabel('Radius')
ylabel('Temperature')
title('Temperature vs Radius')
figure, plot (r,Z)
xlabel('Radius')
ylabel('Heat transfer per unit length')
title('Heat transfer per unit length vs Radius')
% Heat Transfer per Unit Length
function [dZdr_] = dZdr (r,rho,Cp,uR,dTdz)
dZdr_ = -r*rho*Cp*uR*dTdz;
end
% Temperature Profile
function [dTdr_] = dTdr (Z,r,k,rho,Cp,epsilon_m_)
dTdr_ = Z/(r*(k+rho*Cp*epsilon_m_));
end
% Velocity Profile
function [dUdrI_] = dUdrI (tawi,mu,rho,epsilon_m_,Rm,r,Ri)
dUdrI_= tawi./(mu+rho*epsilon_m_)*((Rm^2-r^2)/(Rm^2-Ri^2))*(Ri/r);
end
function [dUdrO_] = dUdrO (tawo,mu,rho,epsilon_m_,r,Rm,Ro)
dUdrO_= tawo./(mu+rho*epsilon_m_)*((r^2-Rm^2)/(Ro^2-Rm^2))*(Ro/r);
end
%eddy diffusivities of momentum
function [epsilon_m] = epsilon_m_ (r,T,Rm,Ri,Ro,tawi,tawo)
if r<Rm
radratio=(r-Ri)/(Rm-Ri);
rEpsI=6.516e-4+3.9225e-1*radratio+(-6.0949e-1)*(radratio).^2+(2.3391e-1)*(radratio).^3+(1.410e-1)*(radratio).^4+(-9.6098e-2)*(radratio).^5;
epsilon_m=rEpsI*sqrt(tawi./rho(T))*(Rm-Ri);
else
radratio=(Ro-r)/(Ro-Rm);
rEpsO=6.516e-4+3.9225e-1*radratio+(-6.0949e-1)*(radratio).^2+(2.3391e-1)*(radratio).^3+(1.410e-1)*(radratio).^4+(-9.6098e-2)*(radratio).^5;
epsilon_m=rEpsO*sqrt(tawo./rho(T))*(Ro-Rm);
end
end
function [Cp_]=Cp(T)
Cp_=1010.4755 + 0.1151*(T) + 4.00e-5*(T).^2;
end
function [k_]=k(T)
k_=0.0243+(6.548e-5)*(T) - (1.65e-8)*(T).^2;
end
%Dynamic Viscosity
function [mu_]=mu(T)
mu_=1.747e-5 + 4.404e-8*(T) - 1.645e-11*((T).^2);
end
function [Pr_]=Pr(T)
Pr_=0.7057*10^(2.06e-5*(T));
end
function [rho_]=rho (T)
rho_ =1e5/(287*(T));
end
function [vis_]=vis(T)
vis_=1.380e-5 + (8.955e-8)*(T) - (1.018e-10)*(T)^2;
end

Accepted Answer

Sriram Tadavarty
Sriram Tadavarty on 20 Mar 2020
Hi Thomas,
Update Ti with a value other than 0 and then this would provide some values other than Nan. When Ti is 0, the value of rho is calculated as 1e5/(287*0) and therefore set to Nan.
Hope this helps.
Regards,
Sriram
  1 Comment
Thomas Faulkner
Thomas Faulkner on 20 Mar 2020
Hi Sriram,
Thanks for the help!
This has solved the issue for my NaN values however i am now getting complex numbers for these values.
Also, my second loop is not changing value and is stuck at zero.
What would you suggest I change here?
Kind regards,
Thomas

Sign in to comment.

More Answers (0)

Categories

Find more on Mathematics in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!