s-function error
10 views (last 30 days)
Show older comments
Hi,
Please, I need some help. While executing the code below in my simulink model, I receive an error message and, I would like to know how to solve it.
The error message is as follows:
Output returned by S-function 'dynamic_model' in 'model_4WID/S-Function' during flag=3 call must be a real vector of length 18
the code :
function [sys,x0,str,ts] = dynamic_model(t,x,u,flag)
switch flag,
case 0,
[sys,x0,str,ts]=mdlInitializeSizes;
case 1,
sys=mdlDerivatives(t,x,u);
case 3,
sys=mdlOutputs(t,x,u);
case { 2, 4, 9 },
sys = [];
otherwise
DAStudio.error('Simulink:blocks:unhandledFlag', num2str(flag));
end
function [sys,x0,str,ts]=mdlInitializeSizes
sizes = simsizes;
sizes.NumContStates = 5;
sizes.NumDiscStates = 0;
sizes.NumOutputs = 18;
sizes.NumInputs = 20;
sizes.DirFeedthrough = 0;
sizes.NumSampleTimes = 1;
sys = simsizes(sizes);
x0 = [20 0 0 0 -5]; % [vx vy r x y] vecteur d'état
str = [];
ts = [0 0];
function sys=mdlDerivatives(~,x,u)
m=1298.9; Iz=1627; lf=1; lr=1.454; br=1.436; bf=br;
r=x(3);phi=atan2(x(2),x(1));
M=[m 0 0 0 0;0 m 0 0 0;0 0 Iz 0 0;0 0 0 1 0;0 0 0 0 1]; %matrice d'inertie
C=[0 m*r 0 0 0;-m*r 0 0 0 0;0 0 0 0 0;0 0 0 cos(phi) -sin(phi);0 0 0 sin(phi) cos(phi)];
F=[u(9)*cos(u(1))-u(13)*sin(u(1))+u(10)*cos(u(2))-u(14)*sin(u(2))+u(11)*cos(u(3))-u(15)*sin(u(3))+u(12)*cos(u(4))-u(16)*sin(u(4));u(13)*cos(u(1))+u(9)*sin(u(1))+u(14)*cos(u(2))+u(10)*sin(u(2))+u(15)*cos(u(3))+u(11)*sin(u(3))+u(16)*cos(u(4))+u(12)*sin(u(4));u(9)*(lf*sin(u(1))+0.5*bf*cos(u(1)))+u(10)*(lr*sin(u(2))-0.5*bf*cos(u(2)))+u(11)*(-lr*sin(u(3))+0.5*br*cos(u(3)))+u(12)*(-lr*sin(u(4))-0.5*br*cos(u(4)))+u(13)*(lf*sin(u(1))-0.5*bf*cos(u(1)))+u(14)*(lf*sin(u(2))+0.5*bf*cos(u(2)))+u(15)*(-lr*sin(u(3))-0.5*br*cos(u(3)))+u(16)*(-lr*sin(u(4))+0.5*br*cos(u(4)));0;0];
de= M\(F-C*x);
sys(1)=de(1);
sys(2)=de(2);
sys(3)=de(3);
sys(4)=de(4);
sys(5)=de(5);
function sys=mdlOutputs(~,x,u)
Cz=0.001; %vertical deflection rate of the tyre
Cs=50000;
epsilon=0.015;
I=2.1;
Iz=1627;
R=0.35;
Ca=30000;
m=1298.9;
lf=1;
lr=1.454;
br=1.436;
bf=br;
mu=0.9;
g=9.81;
cons=m/(lr+lf);
h=0.5;
r=x(3);phi=atan2(x(2),x(1));
M=[m 0 0 0 0;0 m 0 0 0;0 0 Iz 0 0;0 0 0 1 0;0 0 0 0 1]; %matrice d'inertie
C=[0 m*r 0 0 0;-m*r 0 0 0 0;0 0 0 0 0;0 0 0 cos(phi) -sin(phi);0 0 0 sin(phi) cos(phi)];
F=[u(9)*cos(u(1))-u(13)*sin(u(1))+u(10)*cos(u(2))-u(14)*sin(u(2))+u(11)*cos(u(3))-u(15)*sin(u(3))+u(12)*cos(u(4))-u(16)*sin(u(4));u(13)*cos(u(1))+u(9)*sin(u(1))+u(14)*cos(u(2))+u(10)*sin(u(2))+u(15)*cos(u(3))+u(11)*sin(u(3))+u(16)*cos(u(4))+u(12)*sin(u(4));u(9)*(lf*sin(u(1))+0.5*bf*cos(u(1)))+u(10)*(lr*sin(u(2))-0.5*bf*cos(u(2)))+u(11)*(-lr*sin(u(3))+0.5*br*cos(u(3)))+u(12)*(-lr*sin(u(4))-0.5*br*cos(u(4)))+u(13)*(lf*sin(u(1))-0.5*bf*cos(u(1)))+u(14)*(lf*sin(u(2))+0.5*bf*cos(u(2)))+u(15)*(-lr*sin(u(3))-0.5*br*cos(u(3)))+u(16)*(-lr*sin(u(4))+0.5*br*cos(u(4)));0;0];
u1=(x(2)+lf*x(3))/(x(1)+0.5*bf*x(3));
u2=(x(2)+lf*x(3))/(x(1)-0.5*bf*x(3));
u3=(x(2)-lr*x(3))/(x(1)+0.5*br*x(3)); %% les ui représentent les rapports permettant de calculer les angles de dérives de chaque roue%%
u4=(x(2)-lr*x(3))/(x(1)-0.5*br*x(3));
U=[u1 u2 u3 u4];
%------charge verticale:----------
de= M\(F-C*x);
dde= M\(-C*de); %dérivée de de!
Fz1= cons*(0.5*g*lr-0.5*dde(1)*h-lr*h*dde(2)/bf);
Fz2= cons*(0.5*g*lr-0.5*dde(1)*h+lr*h*dde(2)/bf);
Fz3= cons*(0.5*g*lr+0.5*dde(1)*h-lr*h*dde(2)/bf);
Fz4= cons*(0.5*g*lr+0.5*dde(1)*h+lr*h*dde(2)/bf);
Fz=[Fz1 Fz2 Fz3 Fz4]';
%%% velocity component in the wheel plane : is the longitunal velocity
v1=(x(1)+0.5*bf*x(3))*cos(u(1))+(x(2)+lf*x(3))*sin(u(1));
v2=(x(1)-0.5*bf*x(3))*cos(u(2))+(x(2)+lf*x(3))*sin(u(2));
v3=(x(1)+0.5*br*x(3))*cos(u(3))+(x(2)-lr*x(3))*sin(u(3));
v4=(x(1)-0.5*br*x(3))*cos(u(4))+(x(2)-lr*x(3))*sin(u(4));
V=[v1 v2 v3 v4]';
lamda=zeros(4,1);f=length(lamda);
omega=zeros(4,1);
alph=zeros(4,1);
Re=zeros(4,1);
S=zeros(4,1);
dz=zeros(4,1);
Fs=zeros(4,1);
Ft=zeros(4,1);
for i=1:4
dz(i)=-Cz*Fz(i)+ 0.33*R;
Re(i)=R-dz(i)./3;
omega(i)=(-R*u(i+16)+u(i+4))/I;
S(i)=1+omega(i)*Re(i)/V(i);
alph(i)=atan(U(i))-u(i);
lamda(i)= mu*Fz(i)*(1-S(i))*(1-epsilon*V(i)*sqrt((S(i))^2 + (tan(alph(i)))^2))/(2*sqrt((Cs^2)*(S(i))^2 + (Ca^2)*(tan(alph(i))^2)));
if lamda(i)<1
f(i)=lamda(i)*(2-lamda(i));
Fs(i)=Ca*f(i)*tan(alph(i))./(1-S(i));
Ft(i)=Cs*f(i)*S(i)./(1-S(i));
elseif lamda(i)>1
f(i)=1;
Fs(i)=Ca*f(i)*tan(alph(i))/(1-S(i));
Ft(i)=Cs*f(i)*S(i)/(1-S(i));
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Sorties %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
sys(1)= x(1);
sys(2)= x(2);
sys(3)= x(3);
sys(4)= x(4);
sys(5)= x(5);
sys(6)=Ft(1);
sys(7)=Ft(2);
sys(8)=Ft(3);
sys(9)=Ft(4);
sys(10)=Fs(1);
sys(11)=Fs(2);
sys(12)=Fs(3);
sys(13)=Fs(4);
sys(14)= phi;
sys(15)=Fz(1);
sys(16)=Fz(2);
sys(17)=Fz(3);
sys(18)=Fz(4);
0 Comments
Answers (0)
See Also
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!