Classification using test and train datasets.

2 views (last 30 days)
Silpa K
Silpa K on 7 Nov 2019
Commented: Silpa K on 8 Nov 2019
For classifcation using decision tree and finding the accuracy of the classification I used the code below, but I am getting error messages. How can I find the classifcation and accuracy of the classification? Please help me.
trainData = xlsread('arrtrain.xlsx');
testData = xlsread('arrtest.xlsx');
tr = fitctree(trainData(:,2:end),trainData(:,1));
predictLabels = predict(tr,testData(:,2:end));
trueLabels = testData(:,1);
testAccuracy = sum(predictLabels == trueLabels)/length(trueLabels)*100;
The datasets are attached here.
  1 Comment
Silpa K
Silpa K on 8 Nov 2019
clc
clear
b=zeros(36,1);
ts = xlsread('ArrowHead_TRAIN.xlsx');
l=length(ts);
for i = 1:36
p=ts(i,:);
fa = movstd(p,20,1);
secarray=movstd(fa,20,1);
k=maxk(secarray,10);
mpt=find(p);
mp=p(mpt(round(numel(mpt)/2)));
G=min(abs(mp-k));
[~,ii] = min(abs(p(:) - k(:)'));
out = p(unique(ii));
for i = 1 : size(ts,1)
b = 30;
p = ts(i,:);
n = numel(p);
Z = mat2cell(p, 1, diff([0:b:n-1,n]));
end
A = [];
for ii = 1:length(Z)
if any(ismember(Z{ii},out))
if (k-mp<=G+l/2)
A{end+1} = Z{ii};
aa = ii;
end
end
end
z=Z{ii};
idx=p(1:1);
q=[idx z];
data = q;
cellReference = sprintf('A%d', i);
xlswrite('tra.xlsx', data, 1, cellReference);
end
I used the above code for getting the datasets.How can I write all the needed rows in excel.

Sign in to comment.

Answers (1)

Image Analyst
Image Analyst on 7 Nov 2019
You need to give it data.
Your workbooks are completely empty except for a single number in one cell way down at row 175.

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!