how can i find the intersection point between the two curves and the minimum point to the other curve?

2 views (last 30 days)
k1=10^-4;k2=2*10^5
k2 = 200000
d=0.08;
a=50*10^-6:1*10^-6:100*10^-6;
cr =k1./a;
cf =k2*d.*a;
ctot =cr+cf;
plot(a,cr,a,cf,a,ctot)
title('optimal')
xlabel('cross section area')
ylabel('costs')
legend('cr','ctot','cf')
0001 Screenshot.png

Accepted Answer

Image Analyst
Image Analyst on 26 Oct 2019
Do you want the (harder) analytical answer (like from the formula) or the (easier) digital answer from the digitized vectors, like
distances = abs(cf-cr)
[minDistance, indexAtMin] = min(distances);
y1AtMin = cf(indexAtMin)
y2AtMin = cr(indexAtMin)
aAtMin = a(indexAtMin)
hold on;
line([aAtMin, aAtMin], ylim);
  4 Comments

Sign in to comment.

More Answers (1)

mohamed asran
mohamed asran on 9 Nov 2020
clc
clear all
r=0.05;
l=0.01;
st=0.0001;
v=220;
Kf=18;
j=3;
Tl=60;
i=0;
w=0;
I=[];
W=[];
t=[];
for dt=0:0.0001:1
I=[I i];
t=[t dt];
W=[W w];
i=i+(((v-r*i)-(Kf*w)/l)*st);
w=w+((((Kf*i)-Tl)/j)*st);
end
plot(t,W,'linewidth',4)
xlabel('time (sec)','fontsize','18','fontweight','b');
ylabel('SPEED (rpm)','fontsize','22','fontweight','b');
title('Dynamic model of separately excited dc motor under constant excitation');
axis([0 0.1 0.5])
gri;d
plot(t,I,'linewidth',4)
xlabel('time (sec)','fontsize','18','fontweight','b');
ylabel('current (A)','fontsize','22','fontweight','b');
title('current response of rl circuit');
axis([0 0.1 0.5])

Categories

Find more on Mathematics and Optimization in Help Center and File Exchange

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!