Clear Filters
Clear Filters

Mathematical formulation of a operations research problem

7 views (last 30 days)
How can I implement this objective function and its constraints in Matlab (p-median problem)?
Thank you very much!

Accepted Answer

Hasan Cosgun
Hasan Cosgun on 2 Dec 2021
Edited: Hasan Cosgun on 2 Dec 2021
nNodes = 52; % no of nodes (customers)
nP = 6; % No of Warehouses/Facilities
% dist: nNodes x nNodes distance matrix
% decision variables
x = optimvar('x',1,nNodes,'Type','integer','LowerBound',0,'UpperBound',1);
y = optimvar('y',nNodes,nNodes,'Type','integer','LowerBound',0,'UpperBound',1);
prob = optimproblem('ObjectiveSense','minimize');
prob.Objective = sum(sum(dist .* y));
onesum = sum(y,2) == 1;
vertxy = optimconstr(nNodes,nNodes);
for i=1:nNodes
for j=1:nNodes
vertxy(i,j) = y(i,j) <= x(j);
end
end
depsum = sum(x) == nP;
prob.Constraints.onesum = onesum;
prob.Constraints.vertxy = vertxy;
prob.Constraints.depsum = depsum;
nSolution = solve(prob);
Just a full start...
  1 Comment
David Franco
David Franco on 2 Dec 2021
Edited: David Franco on 2 Dec 2021
Thank you very much @Hasan Cosgun!!! I updated your code with an example:
% P-Median Problem (PMP)
rng default
nNodes = 32; % No of Customers
nP = 6; % No of Facilities
xx = randi(20,nNodes,2);
dist = pdist2(xx,xx,'euclidean');
% decision variables
y = optimvar('y',1,nNodes,'Type','integer','LowerBound',0,'UpperBound',1);
x = optimvar('x',nNodes,nNodes,'Type','continuous','LowerBound',0);
prob = optimproblem('ObjectiveSense','minimize');
prob.Objective = sum(sum(dist .* x));
onesum = sum(x,2) == 1; % Restriction 1
depsum = sum(y) <= nP; % Restriction 2
vertxy = optimconstr(nNodes,nNodes);
for i = 1:nNodes
for j = 1:nNodes
vertxy(i,j) = x(i,j) <= y(j); % Restriction 3
end
end
prob.Constraints.onesum = onesum;
prob.Constraints.depsum = depsum;
prob.Constraints.vertxy = vertxy;
[sol,fval,exitflag,output] = solve(prob);
Solving problem using intlinprog. LP: Optimal objective value is 82.069171. Optimal solution found. Intlinprog stopped at the root node because the objective value is within a gap tolerance of the optimal value, options.AbsoluteGapTolerance = 0 (the default value). The intcon variables are integer within tolerance, options.IntegerTolerance = 1e-05 (the default value).
z = 1:nNodes;
idx = sum(sol.x .* z(ones(nNodes,1),:),2);
h1 = gscatter(xx(:,1),xx(:,2),idx);
hold on
h2 = plot(xx(sol.y == 1,1),xx(sol.y == 1,2),'ko');
legend('Location','eastoutside')
h2.Annotation.LegendInformation.IconDisplayStyle = 'off';

Sign in to comment.

More Answers (1)

Matt J
Matt J on 11 Mar 2020
Should be very easy with the Problem-Based Optimization Workflow.

Categories

Find more on Programming in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!