Normalizing a sparse matrix so that rows sum to 1

2 views (last 30 days)
I have the following sparse matrix, which relates to a markov process. The parts of the matrix have been assembled sequentially, adding new entries to row, column, and probability one at a time, and only then creating
S = sparse(row,column,probability)
Because the sequential process involves aggregating probabilities from some states that are equaivalent
full(S)
results in a matrix, whose rows sum to more than one. What I wish to achieve is a normalization of each row in S, such that all rows sum to one. How can that be done by operating on S without needing to create the full matrix?

Accepted Answer

John D'Errico
John D'Errico on 26 Feb 2019
Edited: John D'Errico on 26 Feb 2019
WTP?
M = sprand(10000,10000,.00001);
mean(sum(M,2))
ans =
(1,1) 0.050375
So M is large, sparse, and its rows sum to whatever they want to sum to.
M = M./sum(M,2);
[min(sum(M,2)),max(sum(M,2))]
ans =
(1,1) 1
(1,2) 1
So now normalized. The above will work properly in R2016b or later. I could have done the normalization by multiplying by a sparse diagonal matrix too, probably created using spdiags.

More Answers (0)

Categories

Find more on Sparse Matrices in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!