L2 norm or Frobenius norm?
    128 views (last 30 days)
  
       Show older comments
    
Hi all,
I read that Matlab norm(x, 2) gives the 2-norm of matrix x, is this the L2 norm of x? Some people say L2 norm is square root of sum of element square of x, but in Matlab norm(x, 2) gives max singular value of x, while norm(x, 'fro') gives square root of sum element square.
If I want to do |x|||_2^2, should I use (norm(x, 2))^2 or (norm(x, 'fro'))^2?
Many thanks!
Answers (2)
  Christine Tobler
    
 on 18 Sep 2018
        The L2-norm of a matrix, |A|||_2, ( norm(A, 2) in MATLAB) is an operator norm, which is computed as max(svd(A)).
For a vector x, the norm |x|||_2, ( norm(x, 2) in MATLAB), is a vector norm, defined as sqrt(sum(x.^2)).
The Frobenius norm |A|||_F, ( norm(A, 'fro') in MATLAB), is equivalent to a vector norm applied to all elements of the matrix A. This is identical to norm(A(:), 2).
By the way, if the matrix A is of size 1-by-n or n-by-1, the matrix norm and vector norm interpretations give the same result (max(svd(x)) is identical to sqrt(sum(x.^2))).
0 Comments
  Yuvaraj Venkataswamy
      
 on 31 Aug 2018
        Use 'fro' to estimate the Frobenius norm of a matrix, which estimates the 2-norm of the matrix.
if true
  x=your_matrix;
  n = norm(x,'fro');
end
0 Comments
See Also
Categories
				Find more on Interpolation in Help Center and File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!