binWidth = 1;
binCtrs = 0:binWidth:134;
figure
counts = hist(Life,binCtrs,'k');
stem(binCtrs,counts,'Marker','none','Color',[0.2 0.2 0.2]);
counts = hist(Life,binCtrs);
nu = length(Life);
prob = counts / (nu * binWidth);
figure
stem(binCtrs,prob,'Marker','none','Color',[0.5 0.5 0.5]);hold on ;
AIC = zeros(1,7);
obj = cell(1,7);
for Kk = 1:7
obj{Kk} = gmdistribution.fit(Life,Kk);
AIC(Kk)= obj{Kk}.AIC;
end
[minAIC,numComponents] = min(AIC);
numComponents
numComponents=4;
paramEsts= gmdistribution.fit(Life,numComponents)
MU=[paramEsts.mu(1);paramEsts.mu(2);paramEsts.mu(3);paramEsts.mu(4)];
SIGMA=cat(3,[paramEsts.Sigma(1)],[paramEsts.Sigma(2)],[paramEsts.Sigma(3)],[paramEsts.Sigma(4)]);
PPp=[paramEsts.PComponents(1),paramEsts.PComponents(2),paramEsts.PComponents(3),paramEsts.PComponents(4)];
objA = gmdistribution(MU,SIGMA,PPp);
xgridss=transpose(linspace(0,134,100));
plot(xgridss,pdf(objA,xgridss),'g--','linewidth',2); hold on
numComponents5=4;
paramEsts5= gmdistribution.fit(Life,numComponents5)
MU1=[paramEsts5.mu(1)];
SIGMA1=cat(3,[paramEsts5.Sigma(1)]);
PPp1=[paramEsts5.PComponents(1)];
objA1 = gmdistribution(MU1,SIGMA1,PPp1);
xgridss1=transpose(linspace(0,134,100));
MU2=[paramEsts5.mu(2)];
SIGMA2=cat(3,[paramEsts5.Sigma(2)]);
PPp2=[paramEsts5.PComponents(2)];
objA2 = gmdistribution(MU2,SIGMA2,PPp2);
xgridss2=transpose(linspace(0,134,100));
MU3=[paramEsts5.mu(3)];
SIGMA3=cat(3,[paramEsts5.Sigma(3)]);
PPp3=[paramEsts5.PComponents(3)];
objA3 = gmdistribution(MU3,SIGMA3,PPp3);
xgridss3=transpose(linspace(0,134,100));
MU4=[paramEsts5.mu(4)];
SIGMA4=cat(3,[paramEsts5.Sigma(4)]);
PPp4=[paramEsts5.PComponents(4)];
objA4 = gmdistribution(MU4,SIGMA4,PPp4);
xgridss4=transpose(linspace(0,134,100));
plot(xgridss1,pdf(objA1,xgridss1),'r-','linewidth',2) ; hold on
plot(xgridss2,pdf(objA2,xgridss2),'r-','linewidth',2) ; hold on
plot(xgridss3,pdf(objA3,xgridss3),'r-','linewidth',2) ; hold on
plot(xgridss4,pdf(objA4,xgridss4),'r-','linewidth',2) ; hold on