Solve for variable 'a' in a beastly equation (numerical or analytical ok)
1 view (last 30 days)
Show older comments
Hi all
For reference, I am trying to use equations [3] and [4] in the article found here:
Eq [3]:
d + a/R*(sqrt(a^2-b^2)-a)-a/tan(theta)*(pi/2 - asin(b/a)) = 0
where b = R*cos(theta). I want to rearrange this as an expression a=a(d,R,theta,b) for a as a function of the other variables Then I want to plug that expression for a into the following
Eq[4]:
F = 2*[E/(1-nu^2)]*[d*a - a^2/(2tan(theta))*(pi/2-asin(b/a)-a^3/3R + sqrt(a^2-b^2)*(b/2tan(theta) + a^2-b^2/3R)]
and finally rearrange Eq[4] as an expression E=E(F,d,a,theta,R,b) for E as a function of all the other variables. I have monkeyed around a bit in Matlab and Mathematica but I figured I should consult more knowledgable folks when it comes to solving equations, with which I have little experience in Matlab.
Thanks in advance. Any strategies will be appreciated!
0 Comments
Accepted Answer
Walter Roberson
on 6 Feb 2012
E = (5/3) * R * (sin(AA) - (1/2) * sin(3 * AA) + (1/10) * sin(5 * AA)) *
F * (nu + 1) * (nu - 1) * tan(theta)^2 / (b * ((8/3) * (((R - 1/4) *
b * tan(theta) + (3/8) * R) * sin(AA) + ((1/12) * b * tan(theta) -
(1/8) * R) * sin(3 * AA)) * ( - (cos(2 * AA) + 1) * b^2 / (cos(2 *
AA) - 1))^(1/2) * b^2 + ( - 2 * R * b * sin(AA) * asin(sin(AA)) +
(8/3) * R * d * cos(2 * AA) * tan(theta) - (2/3) * R * d * cos(4 *
AA) * tan(theta) - (8/9) * b^4 + pi * R * b * sin(AA) - (1/3) *
( - 2 * asin(sin(AA)) + pi) * R * b * sin(3 * AA) - 2 * R * d *
tan(theta)) * tan(theta)))
when
AA = RootOf(2 * Z * b * R * sin(Z) + R * d * tan(theta) - d * R * tan(theta) * cos(2*Z) + 2 * b * tan(theta) * (-b^2 * (1+cos(2*Z)) / (-1+cos(2*Z)))^(1/2) * sin(Z) - 2 * b^2 * tan(theta) - b * R * pi * sin(Z), Z)
Here, RootOf() is the operator that returns the values, Z, such that the expression inside RootOf() becomes 0. You can probably see by observation that there is no general algebraic solution -- though if theta is 0, the solutions for RootOf() fall out as 0 and pi/2.
AA corresponds to the solution of "a".
If you are using MuPAD as your symbolic engine (as is the case from R2008b), then you are probably going to have to find a numeric solution for AA.
Note: the above expressions might be incorrect if any of the variables are complex numbers. When I did the simplifications, I added the assumption that the variables were real-valued.
More Answers (0)
See Also
Categories
Find more on Special Values in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!