How it is possible to find the eigenvalues of a 2*2 matrice without using of eigen function?
2 views (last 30 days)
Show older comments
Hi every one,
I tried to fine eigenvalues of 2*2 A matrix with det(A-landa*I) and my script is follow as:
clc
clear all
syms landa
a=input('please enter value of a:');
b=input('please enter value of b:');
c=input('please enter value of c:');
d=input('please enter value of d:');
A=[a b; c d]; I=[1 0;0 1]; B=landa*I;
D=det(A-B)
firstly, I defined landa as syms and after finding determinant, with a=1, b=2, c=3 and d=4, the result is 'landa^2 - 5*landa - 2' . (it is a 2 degree polynomial that saved in D)
so my problem is: How I could got the coefficients of this polynomial for finding the landa1 and landa2 as eigenvalues of A matrix?
0 Comments
Accepted Answer
More Answers (0)
See Also
Categories
Find more on Particle & Nuclear Physics in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!