I have found different values of F_11 in terms of T_f, but I am not gating values of T_f in eular method.

1 view (last 30 days)
clear
clc
n = 172; %no. of day
H = 20000; % altitude in meter
CF = 0.5; %cloud fraction
V_wind =10; %wind velocity
%%Constants taken
u = [7.447323 2.071808 9.010095 7.981491 194];
% a = u(1); % 7.447323;
% b = u(2); % 2.071808;
% c = u(3); % 9.010095;
% d = u(4); % 7.981491;
l = u(5); % 194;
%%constants
alpha = 0.15; %absorptivity of film
albedo_g = 0.35; %ground albedo
albedo_c = 0.5; %cloud albedo
P_sea = 101325; %pressure at sea level
e = 0.0167; %eccentricity of earth
T_g = 280; %temperature of ground in k
T_cl = 262.15; % assuming cloud at altitude 4km in k
R = 6371000; %redius of earth
epsilon_e = 0.95; %earth emissivity
alpha_ir = 0.85; %infrared absorbtivity of film
sigma = 5.67.*10.^-8; %stefan boltzman constant
epsilon_sky = 1; % emissivity of sky
Pw = 0.0042;
g = 9.81;
[T_oa, P_oa, rho_oa] = atmos(H);
x = (0:0.1:u(5));
Fun = 1/8*(sqrt(u(1)*(u(5)-x).*(u(2).*x-u(5)*sqrt(u(3))+sqrt(u(3)*u(5).^2-u(4)*u(5).*x))));
D = 2*max(Fun);
syms x
Fun = 1/8*(sqrt(u(1)*(u(5)-x).*(u(2).*x-u(5)*sqrt(u(3))+sqrt(u(3)*u(5).^2-u(4)*u(5).*x))));
h=1;
k = 10;
zi = k:k:360;
x=0:h:l;
Fun1 = matlabFunction(Fun);
area = 0;
Q_D = 0;
Q_d=0;
Q_r=0;
Q_earth = 0;
Q_sky = 0;
Q_IR = 0;
Q_aIR = 0;
Q_oc = 0;
% Q_sun = 0;
t = 6:1:18;
Q_sun = zeros(1,13);
for c = 1:(length(t));
w = 15.*(12-t(c)); % hour angle
phi = 18.975; % lattitude
delta = 23.45.*sin((pi/180).*(360/365).*(284+n)); %declination angle
omega = asin(sin((pi/180).*delta).*sin((pi/180).*phi)+cos((pi/180).*delta).*cos((pi/180).*phi).*cos((pi/180).*w)); %elevation angle
psi = asin((sin(pi/180).*w).*cos((pi/180).*delta)/cos(omega)); % azimuth angle
E = [cos(omega)*cos(psi), -sin(psi)*cos(omega), sin(omega)]; % solar vector
MA = 2.*pi.*n/365;
M = (P_oa/P_sea).*(sqrt(1229+(614.*sin(omega)).^2)-614.*sin(omega));
Tau_atm = 0.5.*(exp(-0.65.*M)+exp(-0.95.*M));
zita = MA+2.*e.*sin(M)+1.25.*e.^2.*sin(2.*M);
ID = (1367.*Tau_atm.^M).*((1+e.*cos(zita))./(1-e.^2)).^2;
for j=1:length(zi)
for i=1:(length(x)-1)
y1 = Fun1(x(i));
z1 = Fun1(x(i));
x2 = x(i+1);
y2 = Fun1(x(i+1));
z2 = Fun1(x(i+1));
x3 = x(i+1);
y3 = y2*sin((pi/180)*zi(j));
z3 = z2*cos((pi/180)*zi(j));
c1 = y2*cos((pi/180)*k);
c2 = z2*sin((pi/180)*k);
T1 = [0, y3-y2, z3-z2];
T2 = [x(i)-x(i+1), y1-y2, z1-z2];
vec = cross(T1,T2); % normal vector
deltal = sqrt((y2-y1)^2+h^2);
deltazi = sqrt(c2^2+(y2-c1)^2);
dA11 = deltal.*deltazi;
area = area +dA11;
beta = acos((dot(E,vec)/(norm(E).*norm(vec)))); % angle between two vector
thetai = (pi/2)+asin(vec(3)/(sqrt(vec(1)^2+vec(2)^2)));
QD = alpha.*dA11.*ID.*sin(omega).*cos(pi-beta); % direct radiation in Watt
Q_D = nansum(QD);
I_d = (1/2).*ID.*sin(omega).*(1.-Tau_atm.^M)./(1.-1.4.*log(Tau_atm));
Qd = alpha.*I_d.*dA11.*(1+cos(thetai))./2; % diffuse radiation
Q_d1 = nansum(Qd);
Q_d = Q_d + Q_d1;
%Reflected solar radiation model
albedo = albedo_g.*(1-CF).^2+albedo_c.*CF;
Ir = albedo.*(ID.*sin(omega)+I_d);
Qr = alpha.*Ir.*dA11.*(1-cos(thetai))/2; % reflected radiation
Q_r = nansum(Qr);
if beta <= pi/2 % this loop is for consideration of direct radiation,
Q_sun(c) = (Q_sun(c)+Q_D+Q_d+Q_r);
else Q_sun(c) = (Q_sun(c)+Q_d+Q_r);
end
%Infrared Radiation from earth
tau_atm_IR = 1.716-0.5.*(exp(-0.65.*P_oa/P_sea) + exp(-0.95.*P_oa/P_sea));
T_e = T_g.*(1-CF)+T_cl.*CF; %temp of earth
eta = asin(R/(R+H));
VF = (1-cos(eta))/2; %view factor
Q_e = sigma.*epsilon_e.*alpha_ir.*VF.*(T_e.^4).*tau_atm_IR.*dA11; %radiation from earth
Q_earth = Q_earth+Q_e;
%Infrared Radiation from sky
T_sky = T_oa.*(0.51+0.208.*sqrt(Pw)).^0.25; % temperature of sky
Q_s = sigma.*epsilon_sky.*alpha_ir.*(1-VF).*(T_sky.^4).*dA11; % radiation from sky
Q_sky = Q_sky + Q_s;
%Infrared Radiation from airship
syms T_f;
epsilon_f = 0.85; % emissivity of film
Q_ir = 2.*sigma.*epsilon_f.*(T_f.^4).*dA11; % radiation emits from film
Q_IR = Q_IR+Q_ir;
r = 0.05;
Q_a = alpha_ir.*sigma.*epsilon_f.*(T_f.^4/(1-r)).*dA11; % internal radiation absorped by airship
Q_aIR = Q_aIR + Q_a;
Q_rr = epsilon_f.*(dA11/2).*sigma.*((T_f^4-T_sky^4).*(1-VF)+(T_f^4-T_e^4).*VF);
Q_r = Q_r + Q_rr;
% Convection heat transfer model
% external convection
K_air = 0.0241.*(T_oa/273.15).^0.9;
beta_air = 1/T_oa;
Pr_air = 0.804-3.25.*10.^(-4).*T_oa;
nu_air= 1.46.*10.^-6.*T_oa.^1.5/(rho_oa.*(T_oa+110.4));
Ra_air = g.*beta_air.*(T_f-T_oa).*D.^3/nu_air.^2.*Pr_air;
Re_air = V_wind.*l/nu_air; %reynold no.
h_free = (K_air/D).*(0.6+0.387.*((Ra_air)/(1+(0.559/Pr_air).^(9/16)).^(16/9)).^(1/6)).^2; %natural convective heat transfer
h_forced = (K_air/D).*(Re_air.*Pr_air.*(0.2275/(log(Re_air)).^2.584-850/Re_air)); %forced convective heat transfer
h_oc = (h_free.^3 + h_forced.^3).^(1/3);
Qoc = h_oc.*(T_f-T_oa).*dA11; %outside convective heat transfer
Q_oc = Qoc+Q_oc;
end
end
end
Area1 = area;
% disp(Q_sun);
C_p = 1.42*10^3; %specific heat of material in J
mass = 120*10.^-3*Area1;
% disp(-Q_r-Q_IR-Q_oc+Q_aIR);
% disp(Q_sky+Q_earth-Q_IR-Q_IR-Q_oc+Q_aIR);
% disp(Q_d)
T_f = zeros(1,length(t));
F_11 = (Q_sun+Q_sky+Q_earth+Q_aIR-Q_IR-Q_oc)/(mass.*C_p);
F = matlabFunction(F_11);
T_f(1) = 216.65;
for a = 1:(length(t)-1);
T_f(a+1) = T_f(a) + F(a);
end

Answers (0)

Categories

Find more on Oceanography and Hydrology in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!