You are now following this question
- You will see updates in your followed content feed.
- You may receive emails, depending on your communication preferences.
Mismatched Stability check.
21 Comments
Here's the code checking the eigenvalues. As I could see, eigenvalues for t are near zero but eigenvalues for k are quite large.
Should I take different perturbation for k and t?
% Define the equations as anonymous functions eq1 = @(vars, m) (sqrt(vars(1))/sqrt(1-vars(1))) + ((vars(2)*(2*(m^3) + vars(2)^3 - 3*vars(2)*((m+1)^2))^2)/(6*vars(2) - 3*((m-vars(2))^2)) + ((m-vars(2))^2)*(m+2*vars(2))*(m/(3*vars(2)) + 2/3)) / ((m^3 - (vars(2)^2)*(3*m+3) + 2*(vars(2)^3))*(m/(3*vars(2)) - (2*m+vars(2))/(3*(2*vars(2)-((m-vars(2))^2))) + 2/3) - vars(2)*((m-vars(2))^2)*(2*m+vars(2))*((2*m/3) + vars(2)/3)); eq2 = @(vars, m) vars(2) - ((sqrt(vars(1))/sqrt(1-vars(1)))*(((m/vars(2))+2)/3) - (1/3)*(2 + (m/vars(2)) + ((2*m+vars(2))/(((m-vars(2))^2)-2*vars(2))))) / ((sqrt(vars(1))/sqrt(1-vars(1)))*(2*(m^3) - 3*((1+m)^2)*vars(2) + vars(2)^3)/(3*(((m-vars(2))^2)-2*vars(2))) - ((2*m+vars(2))/3));
% Define the range of m values m_values = linspace(0, 1, 100); % 100 values of m between 0 and 1
% Preallocate arrays to store solutions k_solutions = zeros(size(m_values)); t_solutions = zeros(size(m_values)); stabilities = cell(size(m_values));
% Loop over m values and solve the system of equations for each m for i = 1:length(m_values) m = m_values(i);
% System of equations for current m system_of_equations = @(vars) [eq1(vars, m); eq2(vars, m)];
% Initial guess for [k, t] initial_guess = [0.75, 1.5];
% Solve the system of equations using fsolve options = optimoptions('fsolve', 'Display', 'off'); [solution, ~, exitflag] = fsolve(system_of_equations, initial_guess, options);
% Check if fsolve converged if exitflag > 0 % Store solutions if they meet the criteria k_solution = solution(1); t_solution = solution(2);
if k_solution > 0.5 && k_solution < 1 && t_solution > 0 k_solutions(i) = k_solution; t_solutions(i) = t_solution;
% Compute the Jacobian matrix using finite differences delta = 1e-6; J = zeros(2); % Initialize Jacobian matrix
% Compute f_original once outside the loop f_original = system_of_equations(solution);
% Calculate the partial derivatives for the Jacobian matrix for j = 1:2 perturbed_solution = solution; perturbed_solution(j) = perturbed_solution(j) + delta; f_perturbed = system_of_equations(perturbed_solution); J(:, j) = (f_perturbed - f_original) / delta; end
% Calculate eigenvalues of the Jacobian matrix eigenvalues = eig(J);
% Debug: print eigenvalues for inspection fprintf('m = %.2f, k = %.4f, t = %.4f, Eigenvalues: %.6f, %.6f\n', m, k_solution, t_solution, eigenvalues(1), eigenvalues(2));
% Analyze stability if all(real(eigenvalues) < 0) stabilities{i} = 'Stable'; elseif all(real(eigenvalues) == 0) % Use center manifold method for stability analysis % Modify this part with your center manifold method implementation stabilities{i} = 'Center manifold method'; elseif any(real(eigenvalues) > 0) stabilities{i} = 'Unstable'; end else k_solutions(i) = NaN; t_solutions(i) = NaN; stabilities{i} = 'NaN'; end else k_solutions(i) = NaN; t_solutions(i) = NaN; stabilities{i} = 'NaN'; end end
% Display solutions and stabilities disp('Solutions for each m:'); for i = 1:length(m_values) fprintf('m = %.2f, k = %.4f, t = %.4f, Stability = %s\n', m_values(i), k_solutions(i), t_solutions(i), stabilities{i}); end
% Plot solutions figure; plot(m_values, k_solutions, '-o', 'DisplayName', 'k'); hold on; plot(m_values, t_solutions, '-o', 'DisplayName', 't'); xlabel('m'); ylabel('Values'); title('Solutions as a Function of m'); legend('k', 't'); hold off;
% Plot stability figure; plot(m_values, strcmp(stabilities, 'Stable'), '-o', 'DisplayName', 'Stable'); hold on; plot(m_values, strcmp(stabilities, 'Unstable'), '-o', 'DisplayName', 'Unstable'); xlabel('m'); ylabel('Stability'); title('Stability as a Function of m'); legend('Stable', 'Unstable'); hold off;
Answers (0)
See Also
Categories
Tags
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!An Error Occurred
Unable to complete the action because of changes made to the page. Reload the page to see its updated state.
Select a Web Site
Choose a web site to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .
You can also select a web site from the following list
How to Get Best Site Performance
Select the China site (in Chinese or English) for best site performance. Other MathWorks country sites are not optimized for visits from your location.
Americas
- América Latina (Español)
- Canada (English)
- United States (English)
Europe
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)
Asia Pacific
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)