Error using function handles in genetic algorithm.
1 view (last 30 days)
Show older comments
I am getting error:
Unrecognized function or variable 'p'.
clc; clear; close all;
Vs = 250;
k = @(p) p/Vs;
c = @(theta) Vs/sin(theta);
w = 0.001;
d_h = -2;
numElements = 10;
ES = d_h/numElements;
r_s= 2000;
G_s= 1.25e8;
n_s= 0.3;
l_s= 2*n_s*G_s/(1-2*n_s);
a_s= sqrt((l_s+2*G_s)/r_s);
b_s= sqrt(G_s/r_s);
r_g= 24;
G_g= 3e6;
n_g= 0.17;
dl = -5;
%% Genetic Algorithm Parameters
options = optimoptions(@ga,'PopulationSize', 30, 'MaxGenerations', 200,'PlotFcn','gaplotbestf');
% Objective Function
objective_function = @(x_optimal) calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k(p), c(theta), r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
A = [];
b = [];
lb = zeros(1, numElements-2);
ub = ones(1, numElements-2);
nonlcon = [];
[x_optimal, fval] = ga(objective_function, numElements-2, A, b, [], [], lb, ub,nonlcon, options);
% function to calculate objective
function answer = calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k, c, r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
x = [1, x_optimal, 1];
disp(x_optimal);
% rest of the code
answer = integral2(@(theta,p)arrayfun(@(theta,p)q(theta,p),theta,p),pi/18,pi/6,2*pi,20*pi); % minimize
end
6 Comments
Torsten
on 14 May 2024
Edited: Torsten
on 14 May 2024
Try this.
I wonder why your function does not depend on "x_optimal" . From your code, you will always get the same value for "answer" from the "integral2" function, and thus "ga" will terminate with the initial condition vector for x_optimal.
Vs = 250;
k = @(p) p/Vs;
c = @(theta) Vs/sin(theta);
w = 0.001;
d_h = -2;
numElements = 10;
ES = d_h/numElements;
r_s= 2000;
G_s= 1.25e8;
n_s= 0.3;
l_s= 2*n_s*G_s/(1-2*n_s);
a_s= sqrt((l_s+2*G_s)/r_s);
b_s= sqrt(G_s/r_s);
r_g= 24;
G_g= 3e6;
n_g= 0.17;
dl = -5;
%% Genetic Algorithm Parameters
options = optimoptions(@ga,'PopulationSize', 30, 'MaxGenerations', 200,'PlotFcn','gaplotbestf');
% Objective Function
objective_function = @(x_optimal) driver_calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k, c, r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
A = [];
b = [];
lb = zeros(1, numElements-2);
ub = ones(1, numElements-2);
nonlcon = [];
[x_optimal, fval] = ga(objective_function, numElements-2, A, b, [], [], lb, ub,nonlcon, options);
function answer = driver_calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k, c, r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
q = @(theta,p)calculate_objective(theta,p,x_optimal,Vs, w, r_s, G_s, n_s, k(p), c(theta), r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);)
answer = integral2(@(theta,p)arrayfun(@(theta,p)q(theta,p),theta,p),pi/18,pi/6,2*pi,20*pi); % minimize
end
% function to calculate objective
function answer = calculateObjective(x_optimal, Vs, w, r_s, G_s, n_s, k, c, r_g, G_g, n_g, dl, d_h, numElements, ES, l_s, a_s, b_s);
disp(x_optimal);
l_g= 2*n_g*G_g/(1-2*n_g);
a_g= sqrt((l_g+2*G_g)/r_g);
b_g= sqrt(G_g/r_g);
g_a_g= sqrt((c/a_g)^2-1);
g_b_g= sqrt((c/b_g)^2-1);
theta_g= 2*(b_g/c)^2;
A_g = k*g_a_g*dl;
B_g = k*g_b_g*dl;
C_A_g= cos(A_g);
S_A_g= sin(A_g);
C_B_g= cos(B_g);
S_B_g= sin(B_g);
Gg_inv = [theta_g*C_A_g+(1-theta_g)*C_B_g, 1i*(g_a_g*g_b_g*theta_g*S_B_g+(theta_g-1)*S_A_g)/g_a_g, (-C_A_g+C_B_g)/(c^2*r_g), 1i*(g_a_g*g_b_g*S_B_g+S_A_g)/(c^2*g_a_g*r_g);...
1i*(-g_a_g*g_b_g*theta_g*S_A_g+(1-theta_g)*S_B_g)/g_b_g, theta_g*C_B_g+(1-theta_g)*C_A_g, 1i*(g_a_g*g_b_g*S_A_g+S_B_g)/(c^2*g_b_g*r_g), (-C_A_g+C_B_g)/(c^2*r_g);...
c^2*r_g*theta_g*(theta_g-1)*(C_A_g-C_B_g), 1i*c^2*r_g*(g_a_g*g_b_g*theta_g^2*S_B_g+(theta_g-1)^2*S_A_g)/g_a_g, theta_g*C_B_g+(1-theta_g)*C_A_g, 1i*(g_a_g*g_b_g*theta_g*S_B_g+(theta_g-1)*S_A_g)/g_a_g;...
1i*c^2*r_g*(g_a_g*g_b_g*theta_g^2*S_A_g+(theta_g-1)^2*S_B_g)/g_b_g, c^2*r_g*theta_g*(theta_g-1)*(C_A_g-C_B_g), 1i*(-g_a_g*g_b_g*theta_g*S_A_g+(1-theta_g)*S_B_g)/g_b_g, theta_g*C_A_g+(1-theta_g)*C_B_g];
l_s= 2*n_s*G_s/(1-2*n_s);
a_s= sqrt((l_s+2*G_s)/r_s);
b_s= sqrt(G_s/r_s);
g_a_s= sqrt((c/a_s)^2-1);
g_b_s= sqrt((c/b_s)^2-1);
theta_s= 2*(b_s/c)^2;
A_s = k*g_a_s*d_h;
B_s = k*g_b_s*d_h;
C_A_s= cos(A_s);
S_A_s= sin(A_s);
C_B_s= cos(B_s);
S_B_s= sin(B_s);
Gs_inv = [theta_s*C_A_s+(1-theta_s)*C_B_s, 1i*(g_a_s*g_b_s*theta_s*S_B_s+(theta_s-1)*S_A_s)/g_a_s, (-C_A_s+C_B_s)/(c^2*r_s), 1i*(g_a_s*g_b_s*S_B_s+S_A_s)/(c^2*g_a_s*r_s);...
1i*(-g_a_s*g_b_s*theta_s*S_A_s+(1-theta_s)*S_B_s)/g_b_s, theta_s*C_B_s+(1-theta_s)*C_A_s, 1i*(g_a_s*g_b_s*S_A_s+S_B_s)/(c^2*g_b_s*r_s), (-C_A_s+C_B_s)/(c^2*r_s);...
c^2*r_s*theta_s*(theta_s-1)*(C_A_s-C_B_s), 1i*c^2*r_s*(g_a_s*g_b_s*theta_s^2*S_B_s+(theta_s-1)^2*S_A_s)/g_a_s, theta_s*C_B_s+(1-theta_s)*C_A_s, 1i*(g_a_s*g_b_s*theta_s*S_B_s+(theta_s-1)*S_A_s)/g_a_s;...
1i*c^2*r_s*(g_a_s*g_b_s*theta_s^2*S_A_s+(theta_s-1)^2*S_B_s)/g_b_s, c^2*r_s*theta_s*(theta_s-1)*(C_A_s-C_B_s), 1i*(-g_a_s*g_b_s*theta_s*S_A_s+(1-theta_s)*S_B_s)/g_b_s, theta_s*C_A_s+(1-theta_s)*C_B_s];
B= Gs_inv*Gg_inv;
B1= B(1,1);
B2= B(1,2);
B3= B(1,3);
B4= B(1,4);
B5= B(2,1);
B6= B(2,2);
B7= B(2,3);
B8= B(2,4);
B9= B(3,1);
B10= B(3,2);
B11= B(3,3);
B12= B(3,4);
B13= B(4,1);
B14= B(4,2);
B15= B(4,3);
B16= B(4,4);
c1= -(B1+B2);
c2= -(B3+B4);
c3= -(B5+B6);
c4= -(B7+B8);
c5= -(B9+B10);
c6= -(B11+B12);
c7= -(B13+B14);
c8= -(B15+B16);
x2_inv= [(-b_bar*c3*c8+b_bar*c4*c7+c3*c6*d_bar-c4*c5*d_bar+c5*c8-c6*c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (b_bar*c1*c8-b_bar*c2*c7-c1*c6*d_bar+c2*c5*d_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-b_bar*c1*c4+b_bar*c2*c3+c1*c6-c2*c5)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7);...
(a_bar*c3*c8-a_bar*c4*c7-c3*c6*c_bar+c4*c5*c_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-a_bar*c1*c8+a_bar*c2*c7+c1*c6*c_bar-c2*c5*c_bar+c5*c8-c6*c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (a_bar*c1*c4-a_bar*c2*c3+c3*c6-c4*c5)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7);...
(a_bar*c4*d_bar-a_bar*c8-b_bar*c4*c_bar+c6*c_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-a_bar*c2*d_bar+b_bar*c2*c_bar-b_bar*c8+c6*d_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-c2*c_bar-c4*d_bar+c8)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (a_bar*c2+b_bar*c4-c6)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7);...
(-a_bar*c3*d_bar+a_bar*c7+b_bar*c3*c_bar-c5*c_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (a_bar*c1*d_bar-b_bar*c1*c_bar+b_bar*c7-c5*d_bar)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (c1*c_bar+c3*d_bar-c7)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7), (-a_bar*c1-b_bar*c3+c5)/(a_bar*(c1*c4*d_bar-c1*c8-c2*c3*d_bar+c2*c7)+b_bar*(-c1*c4*c_bar+c2*c3*c_bar-c3*c8+c4*c7)+c_bar*(c1*c6-c2*c5)+d_bar*(c3*c6-c4*c5)+c5*c8-c6*c7)];
Y2= x2_inv*(B*[0;0;-w;w]);
u_in= (B(1,4)-B(1,3))*c*w;
mag_u_in= abs(u_in);
w_in= (B(2,4)-B(2,3))*c*w;
mag_w_in= abs(w_in);
Input= sqrt(mag_u_in^2+mag_w_in^2);
u_out= c*abs(Y2(1,1));
w_out= c*abs(Y2(2,1));
Output= sqrt(u_out^2+w_out^2);
answer = Output/Input;
end
Answers (0)
See Also
Categories
Find more on Genetic Algorithm in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!