Kriging prediction - pollution data

7 views (last 30 days)
Alberto CIPPELLETTI
Alberto CIPPELLETTI on 11 Mar 2024
Commented: Kautuk Raj on 26 Mar 2024
good morning everyone!
I am working on a project to represent pollution values along a certain route.
I work on PM10 and CO (carbon monoxide) data, I use the kriging technique.
The graph I get for PM2.5 is fine, the problem is in the CO graph: when you plot the kriging predictions you should get the same kind of graph as for PM10 (so an extrapolation of the values), instead what I get are exactly the samples I collect along the route.
I put the two comparison plots and the code. If it helps I can also upload the csv with the data.
data_gps = load('C:\Users\alber\OneDrive\Desktop\TESI\PROVE_CAMPUS\3-03 (casa)\output_gga.csv');
latitudine = data_gps(:,1);
longitudine = data_gps(:,2);
altitudine = data_gps(:,3);
% converto le coord in coord locali
origine = [latitudine(1) longitudine(1) altitudine(1)];
[xEast, yNorth, zUp] = latlon2local(latitudine, longitudine, altitudine, origine);
% carico i dati del datalog
data_datalog = load('C:\Users\alber\OneDrive\Desktop\TESI\PROVE_CAMPUS\3-03 (casa)\DATALOG.csv');
%creo la griglia
[X, Y] = meshgrid(linspace(min(xEast), max(xEast), 166), linspace(min(yNorth), max(yNorth), 166));
%carico i dati del PM10
pm10 = data_datalog(:,4);
z = pm10;
n = length(data_datalog);
x = xEast;
y = yNorth;
subplot(2,2,1)
scatter(x, y, 10, z, 'filled'); axis image; axis xy
colorbar
title('track with pollution samples PM10')
v = variogram([x y], z, 'plotit', false, 'maxdist', 100);
% and fit a spherical variogram
subplot(2,2,2)
[dum,dum,dum,vstruct] = variogramfit(v.distance, v.val, [], [], [], 'model', 'stable');
xlabel('lag distance h [m]')
ylabel('\gamma(h) [\mug/m^3]')
title('variogram')
% now use the sampled locations in a kriging
[Zhat, Zvar] = kriging(vstruct, x, y, z, X, Y);
subplot(2,2,3)
imagesc(X(1,:),Y(:,1),Zhat); axis image; axis xy
% scatter(x, y,Zhat); axis image; axis xy
title('kriging predictions')
subplot(2,2,4)
contour(X, Y, Zvar); axis image
title('kriging variance')
%% ------------------------ KRIGGING CO ------------------------------
figure
co = data_datalog(:,1);
z = co;
% max_co = max(z);
subplot(2,2,1)
scatter(x, y, 10, z, 'filled'); axis image; axis xy
% geoscatter(lat,lon,10, z, 'filled')
% geobasemap openstreetmap
colorbar
title('track with pollution samples CO')
v = variogram([x y], z, 'plotit', false, 'maxdist', 100);
% and fit a spherical variogram
subplot(2,2,2)
[dum,dum,dum,vstruct] = variogramfit(v.distance, v.val, [], [], [], 'model', 'stable');
xlabel('lag distance h [m]')
ylabel('\gamma(h) [ppm]')
title('variogram')
% now use the sampled locations in a kriging
[Zhat, Zvar] = kriging(vstruct, x, y, z, X, Y);
subplot(2,2,3)
imagesc(X(1,:),Y(:,1),Zhat); axis image; axis xy
title('kriging predictions')
subplot(2,2,4)
contour(X, Y, Zvar); axis image
title('kriging variance')
Can anyone help me?
thank you very much,
alberto.
  1 Comment
Kautuk Raj
Kautuk Raj on 26 Mar 2024
The CSV file with the data could be helpful to understand the problem, please share it.

Sign in to comment.

Answers (0)

Categories

Find more on Image Data Workflows in Help Center and File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!