PlzHelp:Invalid training data. Predictors must be a N-by-1 cell array of sequences, where N is the number of sequences. All sequences must have the same feature dimension and
1 view (last 30 days)
Show older comments
inputSize = [224 224 3];
filterSize = 5;
numFilters = 20;
numHiddenUnits = 200;
numClasses = 4;
layers = [ ...
sequenceInputLayer(inputSize,'Name','input')
sequenceFoldingLayer('Name','fold')
convolution2dLayer(filterSize,numFilters,'Name','conv')
batchNormalizationLayer('Name','bn')
reluLayer('Name','relu')
sequenceUnfoldingLayer('Name','unfold')
flattenLayer('Name','flatten')
lstmLayer(numHiddenUnits,'OutputMode','last','Name','lstm')
fullyConnectedLayer(numClasses, 'Name','fc')
softmaxLayer('Name','softmax')
classificationLayer('Name','classification')];
lgraph = layerGraph(layers);
lgraph = connectLayers(lgraph,'fold/miniBatchSize','unfold/miniBatchSize');
miniBatchSize = 32;
options = trainingOptions("adam", ...
'MaxEpochs',3, ...
'MiniBatchSize',32, ...
'InitialLearnRate',0.005, ...
'LearnRateDropPeriod',2, ...
'LearnRateSchedule',"piecewise", ...
'L2Regularization',5e-4, ...
'SequencePaddingDirection',"left", ...
'Shuffle',"every-epoch", ...
'ValidationFrequency',floor(numel(imdsTrain.Files)/miniBatchSize), ...
'ValidationData',{imdsValidation,imdsValidation.Labels}, ...
'Verbose',false, ...
'Plots',"training-progress");
%
net = trainNetwork(imdsTrain.Files,imdsTrain.Labels,lgraph,options);
0 Comments
Answers (1)
Cris LaPierre
on 1 Mar 2024
The error is in how the data is organized in imdsTrain.Labels
It must conform to the following specifications
See Also
Categories
Find more on Image Data Workflows in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!