Solving 4 nonlinear equation for 4 unknowns numerical - doesn't find an answer [0×1 sym]
2 views (last 30 days)
Show older comments
Hello,
I am attempting to solve a system of nonlinear equations, but unfortunately, vpasolve couldn't find any solutions.
Here is my code:
% ------------ Parameters --------------------
a = 0.9;
beta_10 = 3.5668;
k0 = 4.9907;
K2 = 480;
% ------------ Required Functions --------------------
syms g(x) h1(y) h2(y) v(x)
g(x) = 1.177.*sin((pi.*x)./a).^2;
h1(y) = 1-275.*(y-1).^2;
h2(y) = -14.*(y-1);
h(y) = h1(y) + 1i*h2(y);
v(x) = 1.517+1.833.*x.^2;
% ------------ Equation Functions --------------------
syms x1 x2 y1 y2
Fn1 = ((cos((beta_10/k0)*y1*v(x1))-cos(y1*v(x1)))/sin(y1*v(x1)))*(sin(pi*x1)/a);
Fn2 = ((cos((beta_10/k0)*y2*v(x2))-cos(y2*v(x2)))/sin(y2*v(x2)))*(sin(pi*x2)/a);
Ya1_G0 = (K2*Fn1^2) / (((K2*Fn1^2)/(g(x1)*h(y1)))+(3.0691-13.7872i));
Ya2_G0 = (K2*Fn2^2) / (((K2*Fn2^2)/(g(x2)*h(y2)))+(-1.9145-11.3728i));
% ------------ Equations --------------------
E1 = imag((K2*Fn1^2)/(g(x1)*h(y1))) == 13.7872;
E2 = imag((K2*Fn2^2)/(g(x2)*h(y2))) == 11.3728;
E3 = Ya2_G0/Fn2 == -2 * (Ya1_G0/Fn1);
E4 = Ya1_G0 + Ya2_G0 == 0.5;
E = [E1,E2,E3,E4];
S = vpasolve(E,[x1,x2,y1,y2],[-a/4 a/4;-a/4 a/4;0.98 1.02;0.98 1.02])
Before asking, YES, there are solutions. The desired answers are (x1 = 0.086, y1 = 1.0125) and (x2 = -0.176, y2 = 1.0099), or anything close to that, like (x1 = 0.085, y1 = 1.0126) and (x2 = -0.175, y2 = 1.0097).
How can I find a solution? I appreciate your assistance in advance.
0 Comments
Accepted Answer
Sam Chak
on 29 Nov 2023
Hi @Faraz j
Fixing the vpasolve() syntax does return some complex-valued solutions, with their real parts close to the values of your user-supplied solutions: (, ) and (, ). Also, check if E1 = 13.7872 and E2 = 11.3728 are rounded to 6 digits of precision. If you use the true values, perhaps you can obtain the real-valued solutions.
% ------------ Parameters --------------------
a = 0.9;
beta_10 = 3.5668;
k0 = 4.9907;
K2 = 480;
% ------------ Required Functions --------------------
syms g(x) h1(y) h2(y) v(x)
g(x) = 1.177.*sin((pi.*x)./a).^2;
h1(y) = 1-275.*(y-1).^2;
h2(y) = -14.*(y-1);
h(y) = h1(y) + 1i*h2(y);
v(x) = 1.517+1.833.*x.^2;
% ------------ Equation Functions --------------------
syms x1 x2 y1 y2
Fn1 = ((cos((beta_10/k0)*y1*v(x1))-cos(y1*v(x1)))/sin(y1*v(x1)))*(sin(pi*x1)/a);
Fn2 = ((cos((beta_10/k0)*y2*v(x2))-cos(y2*v(x2)))/sin(y2*v(x2)))*(sin(pi*x2)/a);
Ya1_G0 = (K2*Fn1^2) / (((K2*Fn1^2)/(g(x1)*h(y1)))+(3.0691-13.7872i));
Ya2_G0 = (K2*Fn2^2) / (((K2*Fn2^2)/(g(x2)*h(y2)))+(-1.9145-11.3728i));
% ------------ Equations --------------------
E1 = imag((K2*Fn1^2)/(g(x1)*h(y1))) == 13.7872;
E2 = imag((K2*Fn2^2)/(g(x2)*h(y2))) == 11.3728;
E3 = Ya2_G0/Fn2 == - 2*(Ya1_G0/Fn1);
E4 = Ya1_G0 + Ya2_G0 == 0.5;
E = [E1,E2,E3,E4];
S = vpasolve(E, [x1,x2,y1,y2], [a/4 -a/4 0.98 1.02])
3 Comments
More Answers (1)
Torsten
on 29 Nov 2023
Try
S = vpasolve(E,[x1,x2,y1,y2],[0.086 -0.176 1.0125 1.0099])
But the solution is complex-valued since your function h is complex-valued.
0 Comments
See Also
Categories
Find more on Systems of Nonlinear Equations in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!