How to do a loop for different values?
8 views (last 30 days)
Show older comments
I am trying to find basin of attraction of the roots, and I want to run the code for different values of q ( where q=0:0.2:,0.99) . How to get the results for all the values of q ?
f = @(z) z.^4 - 5*z.^2+4; % Function with real roots
% the roots
r1 =-2;
r2 =-1;
r3 =1;
r4=2;
%% range of basin
nx = 1000;
ny = 1000;
xmin = -4; xmax = 4;
ymin = -2; ymax = 2;
x = linspace(xmin,xmax,nx); % Real space
y = linspace(ymin,ymax,ny); % Imaginary space
[X, Y] = meshgrid(x,y);
Z = X + 1i*Y;
%% Perform our method
q=0.95;
nit = 100; % Maximum number of Newton iterations to be done
for i = 1:nit
Z = Z - (f(Z).*Z.*(1-q))./ (f(Z)-f(q.*Z));
end
%% plotting
eps = 1e-10; % Tolerance to determine closeness to 0.0
Z1 = abs(Z - r1) < eps; Z2 = abs(Z - r2) < eps;
Z3 = abs(Z - r3) < eps; Z4 = abs(Z - r4) < eps;
Z5 = ~(Z1 + Z2 + Z3+Z4);
figure;
map = [0.4660 0.6740 0.1880; 0.8500 0.3250 0.0980; 0 0.4470 0.7410; 0.9290 0.6940 0.1250; 0 0 0];
colormap(map);
Z = Z1 + 2*Z2 + 3*Z3 + 4*Z4 + 5*Z5;
image([xmin xmax],[ymin ymax], Z);
set(gca,'YDir','normal');
axis equal; axis tight;
xlabel('$x$','Interpreter','latex','FontSize',14)
ylabel('$y$','Interpreter','latex','FontSize',14)
title('Basins of attraction for the root of $f(x)=z^4 - 5z^2+4$.','Interpreter','latex','FontSize',14)
4 Comments
Dyuman Joshi
on 6 Nov 2023
Do you just want the plots as an output? or any other value/variable as well?
Accepted Answer
Dyuman Joshi
on 6 Nov 2023
The output images are not big/clear enough with subplot/tiledlayout.
So, this code generates a new figure for each image -
q = 0:0.2:0.99;
%Call the function
arrayfun(@myFun, q)
function myFun(q)
f = @(z) z.^4 - 5*z.^2+4; % Function with real roots
% the roots
r1 =-2;
r2 =-1;
r3 =1;
r4=2;
% range of basin
nx = 1000;
ny = 1000;
xmin = -4; xmax = 4;
ymin = -2; ymax = 2;
x = linspace(xmin,xmax,nx); % Real space
y = linspace(ymin,ymax,ny); % Imaginary space
[X, Y] = meshgrid(x,y);
Z = X + 1i*Y;
%Perform our method
nit = 100; % Maximum number of Newton iterations to be done
for i = 1:nit
%% Function evaluations are costly, especially for an array with 1000x1000 elements
%% Calculate once and store the data in an array instead of calculating
%% twice separately
Z0 = f(Z);
Z = Z.*(1 - (Z0.*(1-q))./(Z0-f(q.*Z)));
end
%% eps is a built-in function, better to not use it as a variable name
Eps = 1e-10; % Tolerance to determine closeness to 0.0
Z1 = abs(Z - r1) < Eps; Z2 = abs(Z - r2) < Eps;
Z3 = abs(Z - r3) < Eps; Z4 = abs(Z - r4) < Eps;
Z5 = ~(Z1 + Z2 + Z3 + Z4);
map = [0.4660 0.6740 0.1880; 0.8500 0.3250 0.0980; 0 0.4470 0.7410; 0.9290 0.6940 0.1250; 0 0 0];
colormap(map);
%plotting
Z = Z1 + 2*Z2 + 3*Z3 + 4*Z4 + 5*Z5;
figure
image([xmin xmax],[ymin ymax], Z);
set(gca,'YDir','normal');
axis tight; axis equal;
xlabel('$x$','Interpreter','latex','FontSize',12)
ylabel('$y$','Interpreter','latex','FontSize',12)
title(sprintf('Basins of attraction for the root of $f(x)=z^4 - 5z^2+4$ for q = %g', q),'Interpreter','latex','FontSize',12)
end
More Answers (0)
See Also
Categories
Find more on Display Image in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!