Differential eguations: modify the program

1 view (last 30 days)
Differential eguations
dy1/dt=-a*y1+y2*y3
dy2/dt=-b(y2-y3)
dy3/dt=-a*y2+ y3-3*y2*y3
a=4 b=8 c=30
y1(0)=0
y2(0)=0
y3(0)=10-10 =0.0000000001
MATLAB ODE45_main:
tspan=[0,100];
y0=[0; 0;10^(-10)];
[t,y]=ode45('ODE45_fun',tspan,y0);
data=[t,y];
save ODE45_data.txt data –ascii
plot3(y(:,1), y(:,2), y(:,3))
grid on
MATLAB ODE45_fun:
function dy=ODE45_fun(t,y)
a=4; b=18; c=30;
dy(1)=-a*y(1)+y(2)*y(3);
dy(2)=-b*(y(2)-2*y(3));
dy(3)=c*y(2)-y(3)-3*y(2)*y(1);
dy=[dy(1);dy(2);dy(3)];
The program can work without any error. If the formula for y4:
y4=-3*y2*y3-4*y1*y3+8*y1*y3
How can I modify the program? And the curve of y4 ?

Accepted Answer

Torsten
Torsten on 2 Apr 2015
tspan=[0,100];
y0=[0; 0;10^(-10);0];
M=[1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0];
options=odeset('Mass',M);
[t,y]=ode45(@ODE45_fun,tspan,y0,options);
function dy=ODE45_fun(t,y)
a=4; b=18; c=30;
dy(1)=-a*y(1)+y(2)*y(3);
dy(2)=-b*(y(2)-2*y(3));
dy(3)=c*y(2)-y(3)-3*y(2)*y(1);
dy(4)=y(4)-(-3*y(2)*y(3)-4*y(1)*y(3)+8*y(1)*y(3));
dy=[dy(1);dy(2);dy(3);dy(4)];
Best wishes
Torsten.
  2 Comments
jixie zhuangbei
jixie zhuangbei on 3 Apr 2015
MATLAB 7
In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 328 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 337 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 324 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 325 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 326 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 327 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 328 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 337 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 324 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 325 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 326 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 327 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 328 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 337 In ODE45_main at 8 Warning: Matrix is singular to working precision. > In funfun\private\odemassexplicit>ExplicitSolverHandleMass1 at 38 In ode45 at 324 In ODE45_main at 8 .....................................
Torsten
Torsten on 7 Apr 2015
I see now that ODE45 can not handle a singular mass matrix.
Use ODE15S instead.
Best wishes
Torsten.

Sign in to comment.

More Answers (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!