"The following code caluclates the outliers above 3 standard deviations for a single column in balls_data{2,1}(:,1)."
No. The code calculates outliers among all elements of balls_data{2,1}, not just those in the first column.
Anyway, it's easier to work with a numeric array than a cell array containing all scalar numerics.
load('balls_data.mat')
all(cellfun(@isscalar,balls_data{2,1}),'all') % all cells contain a scalar
ans = logical
1
Original cell array approach, with additional code to get the actual outliers from the outliers cell array:
data = balls_data{2,1};
mean_val = mean(cat(1, data{:})); % calculate the mean
std_val = std(cat(1, data{:})); % calculate the standard deviation
threshold = 2*std_val; % set the threshold for outlier detection
outliers = cellfun(@(x) x(x > mean_val + threshold | x < mean_val - threshold), data, 'UniformOutput', false); % find the outliers
outliers = cat(1,outliers{:});
disp(outliers);
1.7301
1.7301
1.7324
1.7334
1.7338
1.7349
1.7349
1.7361
1.7370
1.7378
1.7385
1.7385
1.7392
1.7396
1.7399
1.7400
1.7400
1.7401
1.7400
1.7395
1.7395
1.7404
1.7398
1.7375
1.7373
1.7366
1.7366
1.7357
1.7348
1.7341
1.7341
1.7336
1.7336
1.7343
1.7361
1.7361
1.7361
1.7344
1.7349
1.7363
1.7363
1.7369
1.7359
1.7360
1.7371
1.7371
1.7377
1.7373
1.7366
1.7368
1.7368
1.7374
1.7383
1.7385
1.7387
1.7387
1.7392
1.7394
1.7397
1.7398
1.7398
1.7397
1.7401
1.7421
1.7440
1.7440
1.7433
1.7437
1.7455
1.7458
1.7458
1.7454
1.7458
1.7462
1.7463
1.7463
1.7458
1.7453
1.7447
1.7443
1.7443
1.7439
1.7437
1.7432
1.7430
1.7430
1.7438
1.7445
1.7441
1.7441
1.7441
1.7441
1.7440
1.7443
1.7444
1.7444
1.7442
1.7440
1.7439
1.7444
1.7444
1.7446
1.7443
1.7443
1.7434
1.7434
1.7429
1.7425
1.7422
1.7424
1.7424
1.7429
1.7429
1.7419
1.7402
1.7402
1.7372
1.7330
1.7279
1.7224
1.7224
1.7172
1.7104
1.7043
1.6967
1.6967
1.6906
1.6833
1.6785
1.6760
1.6760
1.6723
1.6690
1.6642
1.6642
1.6588
1.6551
1.6528
1.6515
1.6515
1.6496
1.6474
1.6457
1.6442
1.6442
1.6432
1.6420
1.6411
1.6405
1.6405
1.6406
1.6410
1.6410
1.6409
1.6409
1.6411
1.6423
1.6435
1.6431
1.6431
1.6430
1.6431
1.6427
1.6429
1.6429
1.6435
1.6438
1.6437
1.6437
1.6437
1.6438
1.6435
1.6433
1.6433
1.6433
1.6433
1.6426
1.6416
1.6406
1.6406
1.6402
1.6398
1.6391
1.6381
1.6381
1.6371
1.6359
1.6347
1.6336
1.6336
1.6324
1.6310
1.6292
1.6273
1.6273
1.6252
1.6230
1.6206
1.6180
1.6180
1.6149
1.6115
1.6079
1.6041
1.6041
1.5996
1.5948
1.5900
1.5837
1.5837
1.5773
1.5695
1.5627
1.5544
1.5544
1.5450
1.5357
1.5374
1.5535
1.5535
1.5693
1.5838
1.5972
1.6109
1.6109
1.6233
1.6341
1.6430
1.6514
1.6514
1.6605
1.6695
1.6777
1.6843
1.6843
1.6895
1.6940
1.6985
1.7025
1.7025
1.7063
1.7101
1.7133
1.7161
1.7161
1.7184
1.7200
1.7216
1.7216
1.7236
1.7245
1.7257
1.7270
1.7270
1.7281
1.7290
1.7300
1.7315
1.7315
1.7324
1.7332
1.7345
1.7353
1.7353
1.7358
1.7364
1.7368
1.7369
1.7369
1.7370
1.7377
1.7379
1.7376
1.7376
1.7375
1.7374
1.7369
1.7363
1.7363
1.7359
1.7362
1.7364
1.7366
1.7366
1.7366
1.7367
1.7372
1.7375
1.7375
1.7377
1.7379
1.7383
1.7387
1.7387
1.7387
1.7392
1.7401
1.7402
1.7402
1.7404
1.7412
1.7410
1.7406
1.7406
1.7407
1.7412
1.7416
1.7416
1.7416
1.7425
1.7434
1.7436
1.7440
1.7440
1.7443
1.7447
1.7458
1.7464
1.7464
1.7463
1.7462
1.7460
1.7455
1.7455
1.7451
1.7449
1.7449
1.7450
1.7450
1.7450
1.7451
1.7452
1.7455
1.7455
1.7462
1.7464
1.7465
1.7468
1.7468
1.7470
1.7470
1.7473
1.7476
1.7476
1.7474
1.7475
1.7477
1.7478
1.7478
1.7481
1.7481
1.7481
1.7481
1.7483
1.7485
1.7484
1.7483
1.7483
1.7483
1.7485
1.7489
1.7490
1.7490
1.7489
1.7488
1.7486
1.7484
1.7484
1.7486
1.7484
1.7483
1.7484
1.7484
1.7484
1.7484
1.7482
1.7481
1.7481
1.7479
1.7480
1.7482
1.7482
1.7482
1.7483
1.7483
1.7483
1.7485
1.7485
1.7487
1.7488
1.7490
1.7492
1.7492
1.7494
1.7497
1.7506
1.7511
1.7511
1.7515
1.7524
1.7533
1.7544
1.7544
1.7551
1.7551
1.7558
1.7572
1.7572
1.7584
1.7596
1.7610
1.7618
1.7618
1.7613
1.7613
1.7621
1.7626
1.7626
1.7624
1.7617
1.7612
1.7605
1.7605
1.7600
1.7595
1.7595
1.7598
1.7598
1.7602
1.7599
1.7598
1.7601
1.7601
1.7601
1.7600
1.7598
1.7597
1.7597
1.7595
1.7590
1.7581
1.7573
1.7573
1.7563
1.7556
1.7553
1.7550
1.7550
1.7545
1.7539
1.7532
1.7523
1.7523
1.7512
1.7500
1.7493
1.7493
1.7494
1.7496
1.7492
1.7481
1.7481
1.7473
1.7467
1.7463
1.7463
1.7463
1.7459
1.7455
1.7452
1.7451
1.7451
1.7448
1.7444
1.7439
1.7434
1.7434
1.7432
1.7429
1.7424
1.7420
1.7420
1.7420
1.7421
1.7420
1.7416
1.7416
1.7415
1.7412
1.7410
1.7408
1.7408
1.7404
1.7402
1.7403
1.7403
1.7403
1.7401
1.7400
1.7399
1.7397
1.7397
1.7392
1.7385
1.7375
1.7365
1.7365
1.7356
1.7346
1.7334
1.7324
1.7324
1.7312
1.7296
1.7287
1.7290
1.7290
1.7294
1.7286
1.7272
1.7259
1.7259
1.7246
1.7232
1.7214
1.7194
1.7194
1.7175
1.7162
1.7148
1.7130
1.7130
1.7108
1.7088
1.7064
1.7038
1.7038
1.7008
1.6975
1.6945
1.6917
1.6917
1.6891
1.6862
1.6833
1.6809
1.6809
1.6788
1.6769
1.6752
1.6734
1.6734
1.6714
1.6699
1.6689
1.6677
1.6677
1.6663
1.6649
1.6634
1.6625
1.6625
1.6615
1.6601
1.6586
1.6586
1.6571
1.6556
1.6541
1.6527
1.6509
1.6509
1.6491
1.6474
1.6456
1.6456
1.6431
1.6403
1.6376
1.6350
1.6350
1.6322
1.6292
1.6261
1.6226
1.6226
1.6185
1.6140
1.6096
1.6052
1.6052
1.6000
1.5937
1.5881
1.5815
1.5815
1.5757
1.5678
1.5609
1.5521
1.5521
1.5438
1.5363
1.5354
1.5522
1.5687
1.5687
1.5829
1.5957
1.6088
1.6215
1.6215
1.6330
1.6433
1.6523
1.6594
1.6594
1.6670
1.6742
1.6801
1.6871
1.6871
1.6931
1.6976
1.7021
1.7057
1.7057
1.7088
1.7117
1.7148
1.7168
1.7168
1.7191
1.7213
1.7225
1.7247
1.7247
1.7264
1.7272
1.7282
1.7299
1.7299
1.7311
1.7312
1.7319
1.7329
1.7329
1.7332
1.7338
1.7346
1.7346
1.7340
1.7337
1.7348
1.7352
1.7352
1.7351
1.7354
1.7353
1.7348
1.7348
1.7345
1.7349
1.7354
1.7349
1.7349
1.7350
1.7352
1.7349
1.7352
1.7352
1.7355
1.7354
1.7351
1.7347
1.7347
1.7346
1.7349
1.7352
1.7350
1.7350
1.7349
1.7350
1.7355
1.7360
1.7360
1.7360
1.7357
1.7351
1.7354
1.7354
1.7359
1.7364
1.7366
1.7367
1.7367
1.7368
1.7370
1.7370
1.7366
1.7366
1.7363
1.7361
1.7358
1.7357
1.7357
1.7354
1.7352
1.7351
1.7352
1.7352
1.7353
1.7354
1.7354
1.7354
1.7354
1.7355
1.7358
1.7359
1.7357
1.7357
1.7358
1.7359
1.7359
1.7361
1.7361
1.7361
1.7365
1.7367
1.7365
1.7365
1.7371
1.7380
1.7381
1.7378
1.7378
1.7380
1.7386
1.7390
1.7391
1.7391
1.7391
1.7389
1.7390
1.7393
1.7393
1.7394
1.7395
1.7395
1.7395
1.7390
1.7388
1.7389
1.7390
1.7389
1.7389
1.7387
1.7384
1.7379
1.7379
1.7370
1.7358
1.7344
1.7331
1.7331
1.7318
1.7308
1.7305
1.7311
1.7311
1.7322
1.7322
1.7316
1.7317
1.7317
1.7316
1.7317
1.7317
1.7317
1.7317
1.7319
1.7321
1.7320
1.7319
1.7319
1.7319
1.7318
1.7315
1.7315
1.7315
1.7318
1.7321
1.7322
1.7323
1.7323
1.7326
1.7328
1.7329
1.7330
1.7330
1.7332
1.7335
1.7339
1.7340
1.7340
1.7340
1.7343
1.7347
1.7350
1.7350
1.7350
1.7353
1.7356
1.7358
1.7358
1.7361
1.7363
1.7362
1.7363
1.7363
1.7366
1.7369
1.7372
1.7374
1.7374
1.7377
1.7380
1.7383
1.7386
1.7386
1.7392
1.7396
1.7400
1.7405
1.7405
1.7411
1.7414
1.7416
1.7422
1.7422
1.7430
1.7436
1.7438
1.7439
1.7439
1.7441
1.7444
1.7448
1.7452
1.7452
1.7457
1.7458
1.7461
1.7470
1.7470
1.7477
1.7482
1.7491
1.7491
1.7500
1.7507
1.7515
1.7518
1.7518
1.7517
1.7521
1.7534
1.7538
1.7538
1.7526
1.7536
1.7557
1.7561
1.7561
1.7551
1.7553
1.7562
1.7573
1.7573
1.7577
1.7576
1.7572
1.7560
1.7560
1.7547
1.7541
1.7545
1.7550
1.7550
1.7550
1.7546
1.7543
1.7545
1.7545
1.7553
1.7558
1.7557
1.7555
1.7555
1.7554
1.7552
1.7546
1.7543
1.7543
1.7544
1.7543
1.7536
1.7527
1.7527
1.7524
1.7524
1.7524
1.7521
1.7521
1.7511
1.7502
1.7494
1.7490
1.7490
1.7486
1.7479
1.7471
1.7470
1.7470
1.7471
1.7468
1.7460
1.7451
1.7451
1.7444
1.7441
1.7441
1.7439
1.7439
1.7433
1.7429
1.7420
1.7408
1.7408
1.7397
1.7393
1.7395
1.7398
1.7398
1.7391
1.7383
1.7377
1.7374
1.7374
1.7375
1.7375
1.7370
1.7365
1.7365
1.7362
1.7361
1.7359
1.7357
1.7357
1.7353
1.7350
1.7348
1.7348
1.7345
1.7341
1.7336
1.7330
1.7330
1.5385
1.5514
1.5619
1.5720
1.5714
1.5773
1.5821
1.5884
1.5876
1.5919
1.5937
1.5949
1.5977
1.5944
1.5938
1.5916
1.5889
1.5881
1.5857
1.5839
1.5803
1.5757
1.5732
1.5873
1.5848
1.5815
1.5788
1.5778
1.5703
1.5536
1.5373
1.5459
1.5692
1.5864
1.5915
1.6077
1.6184
1.6257
1.6353
1.6288
1.6289
1.6282
1.6301
1.6323
1.6277
1.6209
1.6147
1.6082
1.6040
1.6008
1.5945
1.5861
1.5791
1.5735
1.5718
1.5653
1.5593
1.5534
1.5483
1.5486
1.5436
1.5389
1.5384
1.5603
1.5833
1.6069
1.6234
1.6291
1.6474
1.6622
1.6729
1.6843
1.6770
1.6829
1.6783
1.6760
1.6773
1.6729
1.6688
1.6649
1.6598
1.6570
1.6516
1.6410
1.6315
1.6218
1.6145
1.6121
1.6040
1.5980
1.5930
1.5877
1.5888
1.5846
1.5807
1.5770
1.5733
1.5733
1.5701
1.5670
1.5645
1.5620
1.5626
1.5602
1.5587
1.5571
1.5553
1.5553
1.5536
1.5508
1.5479
1.5456
1.5440
1.5401
1.5360
Numeric array (in this case a simple vector) approach:
data = cat(1, balls_data{2,1}{:}); % make a column vector, then everything else is easier
mean_val = mean(data); % calculate the mean
std_val = std(data); % calculate the standard deviation
threshold = 2*std_val; % set the threshold for outlier detection
outliers2 = data(data > mean_val + threshold | data < mean_val - threshold);
disp(outliers2);
1.7301
1.7301
1.7324
1.7334
1.7338
1.7349
1.7349
1.7361
1.7370
1.7378
1.7385
1.7385
1.7392
1.7396
1.7399
1.7400
1.7400
1.7401
1.7400
1.7395
1.7395
1.7404
1.7398
1.7375
1.7373
1.7366
1.7366
1.7357
1.7348
1.7341
1.7341
1.7336
1.7336
1.7343
1.7361
1.7361
1.7361
1.7344
1.7349
1.7363
1.7363
1.7369
1.7359
1.7360
1.7371
1.7371
1.7377
1.7373
1.7366
1.7368
1.7368
1.7374
1.7383
1.7385
1.7387
1.7387
1.7392
1.7394
1.7397
1.7398
1.7398
1.7397
1.7401
1.7421
1.7440
1.7440
1.7433
1.7437
1.7455
1.7458
1.7458
1.7454
1.7458
1.7462
1.7463
1.7463
1.7458
1.7453
1.7447
1.7443
1.7443
1.7439
1.7437
1.7432
1.7430
1.7430
1.7438
1.7445
1.7441
1.7441
1.7441
1.7441
1.7440
1.7443
1.7444
1.7444
1.7442
1.7440
1.7439
1.7444
1.7444
1.7446
1.7443
1.7443
1.7434
1.7434
1.7429
1.7425
1.7422
1.7424
1.7424
1.7429
1.7429
1.7419
1.7402
1.7402
1.7372
1.7330
1.7279
1.7224
1.7224
1.7172
1.7104
1.7043
1.6967
1.6967
1.6906
1.6833
1.6785
1.6760
1.6760
1.6723
1.6690
1.6642
1.6642
1.6588
1.6551
1.6528
1.6515
1.6515
1.6496
1.6474
1.6457
1.6442
1.6442
1.6432
1.6420
1.6411
1.6405
1.6405
1.6406
1.6410
1.6410
1.6409
1.6409
1.6411
1.6423
1.6435
1.6431
1.6431
1.6430
1.6431
1.6427
1.6429
1.6429
1.6435
1.6438
1.6437
1.6437
1.6437
1.6438
1.6435
1.6433
1.6433
1.6433
1.6433
1.6426
1.6416
1.6406
1.6406
1.6402
1.6398
1.6391
1.6381
1.6381
1.6371
1.6359
1.6347
1.6336
1.6336
1.6324
1.6310
1.6292
1.6273
1.6273
1.6252
1.6230
1.6206
1.6180
1.6180
1.6149
1.6115
1.6079
1.6041
1.6041
1.5996
1.5948
1.5900
1.5837
1.5837
1.5773
1.5695
1.5627
1.5544
1.5544
1.5450
1.5357
1.5374
1.5535
1.5535
1.5693
1.5838
1.5972
1.6109
1.6109
1.6233
1.6341
1.6430
1.6514
1.6514
1.6605
1.6695
1.6777
1.6843
1.6843
1.6895
1.6940
1.6985
1.7025
1.7025
1.7063
1.7101
1.7133
1.7161
1.7161
1.7184
1.7200
1.7216
1.7216
1.7236
1.7245
1.7257
1.7270
1.7270
1.7281
1.7290
1.7300
1.7315
1.7315
1.7324
1.7332
1.7345
1.7353
1.7353
1.7358
1.7364
1.7368
1.7369
1.7369
1.7370
1.7377
1.7379
1.7376
1.7376
1.7375
1.7374
1.7369
1.7363
1.7363
1.7359
1.7362
1.7364
1.7366
1.7366
1.7366
1.7367
1.7372
1.7375
1.7375
1.7377
1.7379
1.7383
1.7387
1.7387
1.7387
1.7392
1.7401
1.7402
1.7402
1.7404
1.7412
1.7410
1.7406
1.7406
1.7407
1.7412
1.7416
1.7416
1.7416
1.7425
1.7434
1.7436
1.7440
1.7440
1.7443
1.7447
1.7458
1.7464
1.7464
1.7463
1.7462
1.7460
1.7455
1.7455
1.7451
1.7449
1.7449
1.7450
1.7450
1.7450
1.7451
1.7452
1.7455
1.7455
1.7462
1.7464
1.7465
1.7468
1.7468
1.7470
1.7470
1.7473
1.7476
1.7476
1.7474
1.7475
1.7477
1.7478
1.7478
1.7481
1.7481
1.7481
1.7481
1.7483
1.7485
1.7484
1.7483
1.7483
1.7483
1.7485
1.7489
1.7490
1.7490
1.7489
1.7488
1.7486
1.7484
1.7484
1.7486
1.7484
1.7483
1.7484
1.7484
1.7484
1.7484
1.7482
1.7481
1.7481
1.7479
1.7480
1.7482
1.7482
1.7482
1.7483
1.7483
1.7483
1.7485
1.7485
1.7487
1.7488
1.7490
1.7492
1.7492
1.7494
1.7497
1.7506
1.7511
1.7511
1.7515
1.7524
1.7533
1.7544
1.7544
1.7551
1.7551
1.7558
1.7572
1.7572
1.7584
1.7596
1.7610
1.7618
1.7618
1.7613
1.7613
1.7621
1.7626
1.7626
1.7624
1.7617
1.7612
1.7605
1.7605
1.7600
1.7595
1.7595
1.7598
1.7598
1.7602
1.7599
1.7598
1.7601
1.7601
1.7601
1.7600
1.7598
1.7597
1.7597
1.7595
1.7590
1.7581
1.7573
1.7573
1.7563
1.7556
1.7553
1.7550
1.7550
1.7545
1.7539
1.7532
1.7523
1.7523
1.7512
1.7500
1.7493
1.7493
1.7494
1.7496
1.7492
1.7481
1.7481
1.7473
1.7467
1.7463
1.7463
1.7463
1.7459
1.7455
1.7452
1.7451
1.7451
1.7448
1.7444
1.7439
1.7434
1.7434
1.7432
1.7429
1.7424
1.7420
1.7420
1.7420
1.7421
1.7420
1.7416
1.7416
1.7415
1.7412
1.7410
1.7408
1.7408
1.7404
1.7402
1.7403
1.7403
1.7403
1.7401
1.7400
1.7399
1.7397
1.7397
1.7392
1.7385
1.7375
1.7365
1.7365
1.7356
1.7346
1.7334
1.7324
1.7324
1.7312
1.7296
1.7287
1.7290
1.7290
1.7294
1.7286
1.7272
1.7259
1.7259
1.7246
1.7232
1.7214
1.7194
1.7194
1.7175
1.7162
1.7148
1.7130
1.7130
1.7108
1.7088
1.7064
1.7038
1.7038
1.7008
1.6975
1.6945
1.6917
1.6917
1.6891
1.6862
1.6833
1.6809
1.6809
1.6788
1.6769
1.6752
1.6734
1.6734
1.6714
1.6699
1.6689
1.6677
1.6677
1.6663
1.6649
1.6634
1.6625
1.6625
1.6615
1.6601
1.6586
1.6586
1.6571
1.6556
1.6541
1.6527
1.6509
1.6509
1.6491
1.6474
1.6456
1.6456
1.6431
1.6403
1.6376
1.6350
1.6350
1.6322
1.6292
1.6261
1.6226
1.6226
1.6185
1.6140
1.6096
1.6052
1.6052
1.6000
1.5937
1.5881
1.5815
1.5815
1.5757
1.5678
1.5609
1.5521
1.5521
1.5438
1.5363
1.5354
1.5522
1.5687
1.5687
1.5829
1.5957
1.6088
1.6215
1.6215
1.6330
1.6433
1.6523
1.6594
1.6594
1.6670
1.6742
1.6801
1.6871
1.6871
1.6931
1.6976
1.7021
1.7057
1.7057
1.7088
1.7117
1.7148
1.7168
1.7168
1.7191
1.7213
1.7225
1.7247
1.7247
1.7264
1.7272
1.7282
1.7299
1.7299
1.7311
1.7312
1.7319
1.7329
1.7329
1.7332
1.7338
1.7346
1.7346
1.7340
1.7337
1.7348
1.7352
1.7352
1.7351
1.7354
1.7353
1.7348
1.7348
1.7345
1.7349
1.7354
1.7349
1.7349
1.7350
1.7352
1.7349
1.7352
1.7352
1.7355
1.7354
1.7351
1.7347
1.7347
1.7346
1.7349
1.7352
1.7350
1.7350
1.7349
1.7350
1.7355
1.7360
1.7360
1.7360
1.7357
1.7351
1.7354
1.7354
1.7359
1.7364
1.7366
1.7367
1.7367
1.7368
1.7370
1.7370
1.7366
1.7366
1.7363
1.7361
1.7358
1.7357
1.7357
1.7354
1.7352
1.7351
1.7352
1.7352
1.7353
1.7354
1.7354
1.7354
1.7354
1.7355
1.7358
1.7359
1.7357
1.7357
1.7358
1.7359
1.7359
1.7361
1.7361
1.7361
1.7365
1.7367
1.7365
1.7365
1.7371
1.7380
1.7381
1.7378
1.7378
1.7380
1.7386
1.7390
1.7391
1.7391
1.7391
1.7389
1.7390
1.7393
1.7393
1.7394
1.7395
1.7395
1.7395
1.7390
1.7388
1.7389
1.7390
1.7389
1.7389
1.7387
1.7384
1.7379
1.7379
1.7370
1.7358
1.7344
1.7331
1.7331
1.7318
1.7308
1.7305
1.7311
1.7311
1.7322
1.7322
1.7316
1.7317
1.7317
1.7316
1.7317
1.7317
1.7317
1.7317
1.7319
1.7321
1.7320
1.7319
1.7319
1.7319
1.7318
1.7315
1.7315
1.7315
1.7318
1.7321
1.7322
1.7323
1.7323
1.7326
1.7328
1.7329
1.7330
1.7330
1.7332
1.7335
1.7339
1.7340
1.7340
1.7340
1.7343
1.7347
1.7350
1.7350
1.7350
1.7353
1.7356
1.7358
1.7358
1.7361
1.7363
1.7362
1.7363
1.7363
1.7366
1.7369
1.7372
1.7374
1.7374
1.7377
1.7380
1.7383
1.7386
1.7386
1.7392
1.7396
1.7400
1.7405
1.7405
1.7411
1.7414
1.7416
1.7422
1.7422
1.7430
1.7436
1.7438
1.7439
1.7439
1.7441
1.7444
1.7448
1.7452
1.7452
1.7457
1.7458
1.7461
1.7470
1.7470
1.7477
1.7482
1.7491
1.7491
1.7500
1.7507
1.7515
1.7518
1.7518
1.7517
1.7521
1.7534
1.7538
1.7538
1.7526
1.7536
1.7557
1.7561
1.7561
1.7551
1.7553
1.7562
1.7573
1.7573
1.7577
1.7576
1.7572
1.7560
1.7560
1.7547
1.7541
1.7545
1.7550
1.7550
1.7550
1.7546
1.7543
1.7545
1.7545
1.7553
1.7558
1.7557
1.7555
1.7555
1.7554
1.7552
1.7546
1.7543
1.7543
1.7544
1.7543
1.7536
1.7527
1.7527
1.7524
1.7524
1.7524
1.7521
1.7521
1.7511
1.7502
1.7494
1.7490
1.7490
1.7486
1.7479
1.7471
1.7470
1.7470
1.7471
1.7468
1.7460
1.7451
1.7451
1.7444
1.7441
1.7441
1.7439
1.7439
1.7433
1.7429
1.7420
1.7408
1.7408
1.7397
1.7393
1.7395
1.7398
1.7398
1.7391
1.7383
1.7377
1.7374
1.7374
1.7375
1.7375
1.7370
1.7365
1.7365
1.7362
1.7361
1.7359
1.7357
1.7357
1.7353
1.7350
1.7348
1.7348
1.7345
1.7341
1.7336
1.7330
1.7330
1.5385
1.5514
1.5619
1.5720
1.5714
1.5773
1.5821
1.5884
1.5876
1.5919
1.5937
1.5949
1.5977
1.5944
1.5938
1.5916
1.5889
1.5881
1.5857
1.5839
1.5803
1.5757
1.5732
1.5873
1.5848
1.5815
1.5788
1.5778
1.5703
1.5536
1.5373
1.5459
1.5692
1.5864
1.5915
1.6077
1.6184
1.6257
1.6353
1.6288
1.6289
1.6282
1.6301
1.6323
1.6277
1.6209
1.6147
1.6082
1.6040
1.6008
1.5945
1.5861
1.5791
1.5735
1.5718
1.5653
1.5593
1.5534
1.5483
1.5486
1.5436
1.5389
1.5384
1.5603
1.5833
1.6069
1.6234
1.6291
1.6474
1.6622
1.6729
1.6843
1.6770
1.6829
1.6783
1.6760
1.6773
1.6729
1.6688
1.6649
1.6598
1.6570
1.6516
1.6410
1.6315
1.6218
1.6145
1.6121
1.6040
1.5980
1.5930
1.5877
1.5888
1.5846
1.5807
1.5770
1.5733
1.5733
1.5701
1.5670
1.5645
1.5620
1.5626
1.5602
1.5587
1.5571
1.5553
1.5553
1.5536
1.5508
1.5479
1.5456
1.5440
1.5401
1.5360
isequal(outliers,outliers2)
ans = logical
1
Now, what exactly are you trying to do? The question specifies balls_data{2,1} but the answers given so far iterate over all elements of balls_data, i.e., balls_data{1,1}, balls_data{2,1}, balls_data{3,1}, ...
You want the outliers for each element of balls_data or what?