natural cubic spline interpolation of y-values: how to get derivative of the spline wrt the y-values?
14 views (last 30 days)
Show older comments
Given a data set with support points x_1,...,x_n and corresponding y-values y_1,...,y_n.
My objective is to create a cubic spline f (with natural boundary conditions) that passes through the y_values. There are, of course, plenty of functions for doing this.
However, for a parameter identification procedure, I have to compute the derivative of the spline f with respect to the y-values -- at arbitrary points within [x1, x_n].
Is there an easy way using built-in functions of Matlab to compute the sensitivities?
2 Comments
Torsten
on 8 Mar 2023
I can understand that you have to compute the derivative of the spline with respect to the parameters, but why with respect to the y-values ?
Accepted Answer
Bruno Luong
on 8 Mar 2023
Edited: Bruno Luong
on 8 Mar 2023
The derivative f wrt to y_i is the spline interpolate b_i := (0,0,...,1,0...) where 1 is at ith position, since the spline is linear to y values.
Replace spline command with your function that computes natural spline pp form
x=cumsum(rand(1,10));
y=rand(size(x));
xi=linspace(min(x),max(x),500);
f=ppval(spline(x,y),xi)
plot(x,y,'or',xi,f,'b') %
b=eye(length(x));
yd=spline(x,b);
dfdy=ppval(yd,xi); % dfdy(i,j) is the derivative of f(xi(j)) with respect to y(i))
figure
plot(xi,dfdy')
17 Comments
More Answers (2)
Bruno Luong
on 8 Mar 2023
Edited: Bruno Luong
on 8 Mar 2023
In this thread https://fr.mathworks.com/matlabcentral/answers/1894800-how-to-remove-noise-from-curves-and-take-their-derivates?s_tid=srchtitle
you can find my function that compute the derivative of a piecewise polynomiall function (pp), inclusing pp form of the spline functions. This function returns the pp form of the derivative, so you can evaluate using MATLAB ppval.
function ppd = ppder(pp)
ppd = pp;
coefs = ppd.coefs;
n = size(coefs,2);
ppd.coefs = coefs(:,1:n-1).*(n-1:-1:1);
ppd.order = ppd.order-1;
end
4 Comments
Bruno Luong
on 8 Mar 2023
Edited: Bruno Luong
on 8 Mar 2023
See my answer below, but
"the result should be a single number"
No the result is a scalar function. If we take f at a given point x then it is a scalar.
"...and not a vector b_i := (0,0,...,1,0...)."
I did not tell the derivative is b, the derivative is the spline interpolating b
"why is a cubic spline linear to y values?"
You clearly missunderstand and male confusion betwen being linear and being a lilnear function
Torsten
on 8 Mar 2023
Moved: Torsten
on 8 Mar 2023
Why do you want to compute the sensitivities manually ?
Usually, the fitting software computes them using a finite-difference approximation, i.e. by calling your function with
y_i
and
y_i+h
getting back
f_j(y_1,...,y_i,...,y_n) and f_j(y_1,...,y_i+h,...,y_n)
and approximating
df_j/dy_i = (f_j(y_1,...,y_i+h,...,y_n)-f_j(y_1,...,y_i,...,y_n))/h
And this would also be my suggestion on how to do it manually if it is really needed.
0 Comments
See Also
Categories
Find more on Splines in Help Center and File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!